Upcoming Raspberry Pi Compute Module 4 possible release date

A new milestone of Industrial IoT might come to life in this year. The successor of Raspberry Pi Compute Module 3+, working named Compute Module 4, will certainly draw from Raspberry Pi 4 B features, such as new Cortex-A72 processor (Broadcom BCM2711) and multiple RAM/eMMC options. Rumours say, that we may also see Gigabit Ethernet and USB3.0/3.1 support, since it was a main drawback in previous models.

Upcoming Raspberry Pi Compute Module 4 possible release date
Raspberry Pi release timeline with probable Compute Module 4 release date

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is mid-2020.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 4 specification forecast

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode) might replace outdated H.264 (1080p30)
  • and OpenGL ES 3.0 graphics will replace 1.1, 2.0 versions,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

A Lite 4 version of Compute Module is to be expected too, without eMMC and probably limited SDRAM options.

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Sigfox announces changes improving IoT applications

First major announcement is that Sigfox will launch a private network (PAN) that will allow IoT customers to choose private and global services according to their needs. The service will be launched for the first time in France in the first quarter of 2020, but Sigfox will be implemented in over 65 countries.

The operator’s wide area network (WAN) will be completed next year in cooperation with Eutelsat. Sigfox provides coverage worldwide using the nano-satellite constellation launched by Eutelsat.

The Sigfox PAN offer will benefit from the existing Sigfox WAN ecosystem. Thanks to the potential to use all components on the market and the use of very low transmit power to support facilities without the need for batteries, the Sigfox PAN offer offers enormous potential,

Ludovic Le Moan, CEO and co-founder of Sigfox.

According to Sigfox, by the end of 2019, there will be more than 15 million registered facilities and over 1,500 customers using this solution in various industries around the world. Sigfox says that PAN customers can expect the same as WAN customers in terms of support and quality. PAN clients can choose to subscribe to additional „WAN Extension” services if needed if the device needs to communicate outside the local network.

Sigfox improving the accuracy of Atlas geolocation services

Internet of Things operators have now launched Atlas Native Complimentary. It is made available free of charge in exchange for the rights to process data regarding GPS data. These data are compared to the fingerprint of the Sigfox network using machine learning, which increases accuracy to 800 meters.

To further increase the accuracy of its geolocation services, Sigfox said it has completed the global implementation of Atlas WiFi in collaboration with HERE Technologies’ mapping experts.

Sigfox uses the global WiFi access point database here. Access points are checked by the Sigfox WiFi tracking module and more closely track the location of external and internal resources with less battery consumption than using GPS.

We are delighted to strengthen our partnership with Amadeus and share our combined expertise to create real digital transformation of the travel sector. Our strategic alliance named PinPoint will not only help to improve the travel experience, but this will also change completely the game for an industry looking for decades for THE technology able to save costs while improving efficiency and quality of services

Raouti Chehih, Chief Adoption Officer at Sigfox

The first services from the strategic alliance are expected to hit the market in 2020.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Sigfox wireless technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Linux Kernel 5.5 brings changes to ARM, RISC-V and MIPS

At the end of last week, Linus Torvalds brought a complete list of Linux 5.5 changes for ARM, MIPS and RISC-V architectures. Io_uring asynchronous I/O has been improved, adding the ability to modify the set of files being operated on without starting over, user-specifiable completion-ring sizes, absolute timeouts, and support for accept() calls among others.

Also the Airtime Queue Limits (AQL) for WiFi that make CoDel work more effectively with wireless drivers that utilized firmware/hardware offloading. KUnit unit testing framework for the Linux kernel with tests can now be run locally on a developer’s workstation without any VM or special hardware. Another change is SMB rootfs and multichannel support using SMB as root file systems, and support for using multiple network connections for the same SMB session.

For more information about changes to different architectures, check out the article exploring the subject: https://www.cnx-software.com/2020/01/27/linux-5-5-release-main-changes-arm-mips-and-risc-v-architectures/

Linux 5.5 changes announcement

So this last week was pretty quiet, and while we had a late network update with some (mainly iwl wireless) network driver and netfilter module loading fixes, David didn’t think that warranted another -rc. And outside of that, it’s really been very quiet indeed – there’s a panfrost driver update too, but again it didn’t really seem to make sense to delay the final release by another week.

Outside of those, it’s all really tiny, even if some of those tiny changes touched some core files.

So despite the slight worry that the holidays might have affected the schedule, 5.5 ended up with the regular rc cadence and is out now.

That means that the merge window for 5.6 will open tomorrow, and I already have a couple of pull requests pending. The timing for this next merge window isn’t optimal for me – I have some travel and other things going on during the same two weeks, but hopefully it won’t be all that noticeable. But there might be random timezones, odd hours, and random delays because of that. I try to avoid scheduling things during the merge window, but hey, it doesn’t always work out, and I’d have to delay things by two weeks to avoid the conflicts, which just doesn’t seem worth it.

Particularly since it’s not necessarily going to be a problem to begin with. We’ll see.

Anyway. Go out and test 5.5, and start sending me those pull requests for all the new development that is ready,

Source: https://lkml.org/lkml/2020/1/26/232

Ubuntu 19.10 for latest Raspberry Pi applications

With 19.10 release of Ubuntu Server, Canonical announced official support for the Raspberry Pi 4. The latest board from the Raspberry Pi Foundation sports a faster system-on-a-chip with a processor that uses the Cortex-A72 architecture (quad-core 64-bit ARMv8 at 1.5GHz). Additionally, it offers up to 4GB of RAM. We are supporting the Raspberry Pi 4 to give developers access to a low-cost board, powerful enough to consolidate compute workloads at the edge. 

The Raspberry Pi has established itself as a most accessible platform for innovators in the embedded space. Canonical is dedicated to empowering innovators with open-source software. Consequently, Canonical endeavors to offer full official support for all the boards in the Raspberry Pi family. Canonical will therefore enable both Ubuntu Server and Ubuntu Core for existing and upcoming Pi boards.

Ubuntu Roadmap. Source: https://ubuntu.com/blog/roadmap-for-official-support-for-the-raspberry-pi-4

Industrial use of Raspberry Pi 4

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

Raspberry Pi 4

Over 10 million Raspberry Pi’s have been sold and the Raspberry Pi is likely to stay as a new standard in the industry. Official Raspbian OS is free operating system based on Linux Debian optimized for the Raspberry Pi comes with over 35,000 packages, pre-compiled software bundled in a nice format for easy installation. ModBerry devices are compatible with Raspberry Pi accessories, supported by Raspberry Pi Foundation. ModBerry M500 now with Raspberry Pi 3 Model B+ / Raspberry Pi 4 Model B support.

New release of OpenWRT 19.07 for WLAN devices

Good news for developers and modders of router software. A new Linux distribution, OpenWRT 19.07 has just been released, created primarily for WLAN devices, which debuted with the iconic Linksys WRT54G routers. OpenWrt 19.07 is mainly developed for devices using the AVR32, ARM, CRIS, m68k, MIPS, PowerPC, SPARC, SuperH, Ubicom32, x86 and x86-64 architecture.

What’s new in OpenWrt 19.07

A lot changed from the previous version of OpenWrt 18.06 version. Even WPA3 support has been added. However, it is not enabled by default and requires the installation of additional packages. Hostapd-openssl is needed for WPA3 to work in access point mode, it will need wpa-supplicant-openssl or wpad-openssl (additional AP) to use in Wi-Fi station mode.

Software developers have decided to switch to ath79 from ar71xx – in the future support for ar71xx will be completely withdrawn. In addition, the Linux kernel has been updated to version 4.14.162, and support for adm5120, adm8668, ar7, au1000, ixp4xx, mcs814x, omap24xx, ppc40x, ppc44x and xburst has been terminated.

A new feature is the updated LuCI, an integrated web interface for OpenWRT that implements client-side rendering. The LuCI ecosystem is large and not all LuCI applications have been adapted for this change, which can cause cbi.lua crashes. If so, install the luci-compat package.

The latest version of software can be downloaded from the project’s official website, here where you can also find the full list of changes.

Why should you try OpenWRT?

People who like to modify soft routers will confirm: OpenWRT dramatically increases the capabilities of network devices. OpenWRT is several thousand software packages that advanced users can install or remove depending on their needs. The software also improves network security – after all, the router owner will have full control over the configuration of every aspect of the hardware.

Industrial use of OpenWRT-based solutions

One of industrial IoT devices, supporting the technology and it’s varieties is ModBerry M series from TECHBASE. Economical, M300 model, based on NanoPi boards can serve as an OpenWRT modem, with optional changes in standard ModBerry controller. For more information check Industrial IoT Shop with all the configuration options for ModBerry M series .

Realtek RTL8720DN Dual-Band WiFi & BT 5.0 vs ESP32

IoT market ofers wide range of small and efficient modules for Home & Industrial Internet of Things applications, equipped with 2.4GHz Wi-Fi, such as Espressif’s ESP32 or older ESP8266 modules. Additional Bluetooth 4.2/5.0 is often found on those. Dual-band Wi-Fi, on the other hand, is hard to find on low-budget IoT modules. Here comes Realtek RTL8720DN.

Realtek RTL2720DN module, as a part of AmebaD family, comes with ARM Cortex-M4/M0 wireless MCU with support of 802.11 b/g/n Dual-Band Wi-Fi 2.4GHz / 5GHz and extra Bluetooth 5.0 wireless connectivity.

Realtek RTL8720DN Dual-Band WiFi & Bluetooth 5.0 module

Realtek RTL8720DN specifications:

  • Wireless SoC – Realtek RTK8720DN MCU with KM4 Arm Cortex-M4 core @ 200 MHz and KM0 Arm Cortex-M0 core @ 20 MHz
  • Connectivity
    • WiFi
      • 802.11 a/b/g/n WiFi 4
      • Frequency Range – 2.412-2.484GHz & 5.180-5.825GHz
      • Data Rates
        • 802.11a: 6,9,12,18,24,36,48,54Mbps
        • 802.11b: 1,2,5.5,11Mbps
        • 802.11g: 6,9,12,18,24,36,48,54Mbps
        • 802.11n: MCS0–MCS7 @ HT20/HT40 2.4GHz and 5GHz bands
      • AP, Station, AP/Client supported
    • Bluetooth
      • Bluetooth 5.0 LE
      • Receiver Sensitivity: -92 dBm
      • Transmit Power: 7 dBm
    • Antenna – IPEX connector or PCB Antenna
  • I/O – 16x castellated holes with GPIO, 2x UART (AT commands + serial), ADC, I2C, SPI, 4x PWM, 3.3V, GND
  • Power Supply – 3.3±5% V
  • Dimensions – 24 x 16 x 3 mm
  • Temperature Range – Operating: -20°C to 85°C; storage: -40°C to 125°C
  • Relative Humidity – 10%~90% (non-condensing)
  • Certifications – FCC, CE, SRRC, RoHS

Source: https://www.cnx-software.com/2020/01/17/realtek-rtl8720dn-dual-band-wifi-bluetooth-5-0-iot-module/

Bluetooth 5.0 update for ESP32

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Bluetooth LE 5.0/5.1 comming soon to ESP32-based controller

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Bluetooth 5.0 update for ESP32

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Due to hardware limitations, ESP32 does not support such functions of Bluetooth LE 5.0 as 2M PHY, LE Long Range, and ADV Extensions.

It is also worth mentioning that the combination of Bluetooth and Mesh networking is expected to become a key technology for the Internet of Things. A  Bluetooth® Mesh network enables a „many-to-many” relationship among potentially thousands of wireless devices, where data are transmitted not in a direct radio range but in wide physical areas. Espressif’s contribution in this field is the ESP-BLE-MESH, which got fully certified by Bluetooth SIG in September 2019.

Several Bluetooth-operated products on the market, such as wearable devices, smart speakers, cleaning robots, smart lights/sockets, etc., provide evidence that Bluetooth 5.0 and the Bluetooth Mesh networking technology are mature enough to drive the development of interconnected IoT devices. To this end, Espressif’s chips and ESP-BLE-MESH, in particular, are designed to help customers develop easily secure and cost-effective products for smart homes, smart buildings, healthcare, new automobiles and other smart industries.

Source: https://www.espressif.com/en/news/BLE_5.0_Certification

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
ONiO.zero running without battery can revolutionize the IoT market

ONiO, a Norwegian specialist in the field of the Internet of Things (IoT) for the medical industry, announced ONiO.zero, a RISC-V-based microcontroller with very low power consumption, which can work completely from the energy harvested from the environment. ONiO claims that its design can take energy from the radio spectrum and operate up to 24 MHz.

„ONiO.zero is a wireless MCU with very low power consumption, which uses energy acquisition technology,” wrote the company about its creation. This means that ONiO.zero only works on ambient energy. There are no coin cells, supercaps, lithium and batteries, but still offers a lot of performance.

Battery-based solutions have an unavoidable warning about battery replacement. This leads to increased costs over the entire lifetime. ONiO.zero avoids this problem and reduces operating costs. ONiO.zero is self-powered and supports a wide range of power sources, from multi-frequency RF bands supporting GSM and ISM to optional external sources such as solar, piezoelectric, thermal and voltaic.

Source: https://www.hackster.io/news/onio-zero-offers-up-to-24mhz-of-risc-v-microcontroller-performance-on-nothing-but-harvested-energy-70285321d50d

The microcontroller itself is based on the architecture of the RISC-V instruction set of the open source type (in particular RV32EMC) and operates up to 24 MHz with a supply voltage of 1.8 V. The controller will work if necessary with lower voltages. You can get 6 MHz at 1 V and 1 MHz at 0.8 V, and the system still runs slower, but as fast as 450 mV. Includes 1 KB ROM and 2 KB RAM, as well as 8-32 KB of ultra low power flash memory, capable of 100,000 read and write cycles up to 850 mV.

ONIO.zero running without battery can revolutionize the IoT market

ONiO.zero contains a crystalline Low Energy Bluetooth transmitter (BLE) that can operate at a voltage as low as 850mV, an IEEE 802.15.4 (UWB) broadband transmitter operating in the 3.5-10 GHz band, and optional radio transmitter 433 MHz MICS for the industrial, scientific and medical band (ISM).

ONiO.zero hasn’t been released yet. For more information check the ONiO.zero product page.

Battery-ready IoT devices based on ESP32

Battery / SuperCap power support allows the processes and data to be securely executed, saved or transferred, and the operating system to be safely shutdown or reboot, if the power source has been restored. The power failure alert can also be sent to cloud service, to perform custom task, specified by user or self-learning AI algorithm.

The Moduino device is a comprehensive end-point controller for variety of sensors located throughout any installation. It fully supports temperature and humidity sensors and new ones are currently developed, e.g. accelerometer, gyroscope, magnetometer, etc.

Battery powered Moduino ESP32
Battery powered IoT installation. Source: https://moduino.techbase.eu/

ModuinoModBerry symbiosis allows wide range of wake-up/sleep schedule customization, in order to perform best and save energy accordingly to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using schedule/timer. Another option is wake on external trigger, e.g. change of input, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.



Coral Dev Board - a new Raspberry Pi-like platform from Google

The Coral platform launched by Google is expected to contribute to the easier creation of systems in the field of the Internet of Things. During CES 2020, the manufacturer will devote a lot of attention to her.

Google presented a new, miniature accelerator module for the Coral platform. The sensor has dimensions of only 10×15 mm, so it is smaller than the American one-cent coin. Coral is a Google platform created to facilitate the construction of equipment compatible with the Internet of Things technology, equipped with artificial intelligence.

Components produced by Google have already been used to create many intelligent systems used, for example, in healthcare, agriculture or technologies supporting the functioning of cities. Coral works well also in offline mode and with limited connectivity. The new module is expected to increase its functionality.

The Coral Dev Board together with the USB and PCIe accelerator went on sale in 2019, and is now being sold in 36 countries. We can expect many innovations related to this technology during CES 2020. Google announces that it has prepared various demonstrations of the new module capabilities for this meeting.

Google’s Coral Dev Board

Coral Dev Board

Unlike popular single board, Raspberry Pi or Raspberry’s Chinese competitors, according to Google, Coral Dev Board is to be a specialized computer – it is primarily targeted at developers who want to have a device on which algorithm learning is possible. The computer is running Mendel Linux built on Debian, we will also find Tensor Flow Lite libraries with ready-to-compile models. No internet connection is required in the learning process – the entire process is done locally.

From the hardware side, the most important here is the Edge TPU coprocessor – a Google tensor system designed to be used together with the Tensor Flow library used in machine learning. In addition, the board got the ARM 4-core NXP i.MX 8M processor, GC7000 Lite Graphics, as much as 1 GB of RAM (LDPRR4) and 8 GB of eMMC memory. Coral connects to other devices via Wi-Fi oral USB Accelerator and Bluetooth 4.1.

Therefore, it cannot be said that, compared to other SBC Coral, it is hardware limited. What’s more, it has a microSD card slot, two USB type C sockets (one for power supply, the other for data transfer), minijack output, HMDI output, GPIO pins. The device can also be connected to the Internet via a cable with an RJ-45 plug. It is also possible to buy a camera useful in machine learning image processing algorithms.

Industrial use of Raspberry Pi-like development boards

Introduced in November 2017, the ModBerry M300 series, based on NanoPi NEO revolutionised the economic segment of Industrial IoT devices and proved, that automation and monitoring can be done effectively with low expenditure on industrial installations.

ModBerry M300 O1 based on OrangePi Zero Plus features Allwinner H5 (Quad-core Cortex-A53) SoC, moderate 512MB RAM, storage memory option with microSD slot, USB and Gigabit Ethernet port. The wireless communication is supported with onboard Wi-Fi module.

Offering much higher performance and wider feature range, the ModBerry M300 O2 features same SoC as M300 series, but thanks to OrangePi Zero Plus2 means, the device is equipped with onboard 8GB eMMC, extra microSD expansion slot as alternative and wired/wireless interfaces, e.g. HDMI, Wi-Fi, Bluetooth 4.0.

Pros and cons of using Raspberry Pi 4 in IoT

Every fan of new technologies has heard of small single-board computers (SBC) in the form of Raspberry Pi 4. Raspberry debuted on the market in many different versions, and the current model is Model 4B. A lot of people got infected with it for DIY, programming or Linux. But new board comes with variety of pros and cons, as compared to previous RPi3 versions.

Industrial use of market Raspberry Pi 4 SBCs

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

ModBerry M500 with Raspberry Pi’s 4

ModBerry M500 also utilizes many more SBC platforms, such as Orange Pi, NanoPi and Intel-based UpBoard. Find more information here: https://iiot-shop.com/product/modberry-m-series/

Latest NanoPi R2S Dual Gigabit Ethernet SBC & Router

The new NanoPi R2S is based on the Rockchip RK3328 processor, adding system memory, including 1 GB DDR4 RAM, and is designed to support 4G LTE via the Huawei 8372H-155 USB dongle. R2S is equipped with two Gigabit Ethernet ports (with one deployed for WAN and the other for LAN). This board can surely be used in industrial and Internet of Things (IoT) applications.

Most features resemble an update, but NanoPi R2S does not have built-in Wi-Fi for unknown reasons and certainly seems to be a downgrade. However, instead of built-in WiFi, friendlyELEC recommends using the RTL8821CU USB dongle, which is immediately supported with the default firmware.

NanoPi NEO2 Black specifications:

  • SoC – Rockchip RK3328 quad-core Cortex-A53 @ 1.5 GHz with Arm Mali-450MP2
  • System Memory – 1GB DDR4 RAM
  • Storage – MicroSD Slot, SPI flash footprint
  • 1x Gigabit Ethernet (WAN) up to 941 Mbps (measured)
  • 1x Gigabit Ethernet (LAN) up to 941 Mbps (measured) via Realtek RTL8153 USB 3.0 to Ethernet controller
  • USB – 1x USB Type-A host port, 1x micro USB port (power + slave)
  • Debugging – 3-pin 2.54mm pitch header for serial console
  • Expansion – 10-pin GPIO header with GPIOs, I2C, UART, IR_Rx, 5V, 3.3V and GND
  • Misc – 3x LEDs (WAN, LAN, SYS), K1 reset button, fan header
  • Power Supply – 5VDC/3A via micro USB port
  • Dimensions – 55.6 x 52mm
  • Temperature Range – -20℃ to 70℃

Source: https://www.cnx-software.com/2020/01/16/nanopi-r2s-dual-gigabit-ethernet-sbc-router-is-powered-by-rockchip-rk3328-soc/

NanoPi R2S layout
NanoPi R2S layout

Industrial use of previous OrangePi development boards

Introduced in November 2017, the ModBerry M300 series, based on NanoPi NEO revolutionised the economic segment of Industrial IoT devices and proved, that automation and monitoring can be done effectively with low expenditure on industrial installations.

ModBerry M300 O1 based on OrangePi Zero Plus features Allwinner H5 (Quad-core Cortex-A53) SoC, moderate 512MB RAM, storage memory option with microSD slot, USB and Gigabit Ethernet port. The wireless communication is supported with onboard Wi-Fi module.

Offering much higher performance and wider feature range, the ModBerry M300 O2 features same SoC as M300 series, but thanks to OrangePi Zero Plus2 means, the device is equipped with onboard 8GB eMMC, extra microSD expansion slot as alternative and wired/wireless interfaces, e.g. HDMI, Wi-Fi, Bluetooth 4.0.