The ModBerry 500 series from TECHBASE has long been a staple in the industrial IoT automation market, known for its reliability and versatility. The upcoming ModBerry 500 CM5, integrates the powerful Raspberry Pi Compute Module 5 (CM5), bringing significant enhancements and maintaining compatibility with previous versions.

Compatibility with Raspberry Pi Compute Module 5

The ModBerry 500 series is fully compatible with the Raspberry Pi Compute Module 5, ensuring seamless integration and enhanced performance. This compatibility allows users to leverage the advanced features of the CM5, including improved processing power and expanded memory options, while maintaining the robust and flexible platform that ModBerry users have come to rely on.

Advantages of the ModBerry 500 CM5 in IoT Automation

The ModBerry 500 series has established itself as a leading solution in the IoT automation market due to its reliability with proven track record in various industrial applications, ensuring consistent performance in harsh environments.

Huge versatility provided with a wide range of configurable hardware options to meet specific needs, including digital and analog I/Os, serial ports, and various communication interfaces. ModBerry 500 devices are easy to deploy with user-friendly setup and configuration, supported by a strong community and extensive documentation.

New Processor Features

The integration of the Raspberry Pi Compute Module 5 brings several key enhancements:

  • Enhanced Processing Power: The CM5 features a powerful Cortex-A76 4×2.4GHz processor, providing faster and more efficient data processing capabilities
  • Increased Memory: Options for up to 16GB of LPDDR4x-4267 SDRAM, allowing for more complex applications and better multitasking
  • USB 3.0 Support: The addition of USB 3.0 ports significantly improves data transfer speeds, making it ideal for applications requiring high-speed connectivity

Benefits of the upgraded ModBerry 500 CM5

The previous ModBerry 500 CM4 has established its position on the market as a robust IoT platform. New CM5 version offers not only the same but improved capabilities, thanks to compatibility with the new processor unit.

  • High Performance: Powered by the quad-core Cortex-A76 processor, providing reliable performance for various industrial tasks with support of eMMC storage and M.2 NVMe SSD support
  • Rich I/O Interfaces: Including Gigabit Ethernet, digital and analog inputs/outputs, RS-232/RS-485 serial ports, and more
  • Wireless Communication: Built-in WiFi, Bluetooth, and optional 4G/LTE, 5G, Narrow-Band IoT, LoRa, Sigfox and other wireless communication modules

With the update to CM5, the ModBerry 500 series continues to build on these strengths, offering even greater performance and flexibility for industrial IoT applications. The ModBerry 500 CM5 represents a significant upgrade, combining the proven reliability and versatility of the ModBerry platform with the advanced features of the Raspberry Pi Compute Module 5. 

The first pieces of devices are available for order. Contact our sales department via Chat at IIoT-Shop.com to obtain test pieces and receive a commercial offer for a larger order. It is also possible to upgrade previously purchased devices to the CM5 module, due to full compatibility with the earlier version of ModBerry CM4 (however cooling conversion is required). Technical datasheet for ModBerry 500 CM5 will be available on Raspberry Pi Compute Module 5 official release.

In today’s fast-paced and technology-driven world, the manufacturing industry is undergoing a profound transformation. The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT) has revolutionized industrial operations, leading to increased efficiency, productivity, and profitability. In this article, we will explore how AI-driven IoT is transforming manufacturing and how the AI Gateway from TECHBASE is playing a pivotal role in this revolution.

The Power of AI-driven IoT in Manufacturing

The integration of AI and IoT technologies has unlocked unprecedented opportunities for manufacturers. AI-driven IoT systems enable the collection, analysis, and utilization of vast amounts of data generated by interconnected devices on the factory floor. This data-driven approach empowers manufacturers with actionable insights and predictive capabilities, ultimately optimizing processes and enhancing decision-making.

Enhancing Efficiency and Productivity

AI-driven IoT solutions bring a new level of automation and optimization to manufacturing processes. By leveraging AI algorithms, IoT devices can autonomously monitor and control various aspects of production, reducing human error and increasing efficiency. Smart sensors, for example, can detect anomalies in equipment performance, enabling predictive maintenance to prevent breakdowns and minimize downtime.

Furthermore, AI-driven IoT systems facilitate real-time data analysis, enabling manufacturers to identify bottlenecks, streamline workflows, and optimize resource allocation. This data-driven approach empowers manufacturers to make informed decisions that result in increased productivity and reduced costs.

Improving Quality Control and Product Traceability

Maintaining consistent product quality is a top priority for manufacturers. AI-driven IoT solutions play a vital role in achieving this objective. By continuously monitoring the production process, IoT sensors can detect deviations from desired quality standards. Leveraging AI algorithms, manufacturers can proactively identify potential quality issues, enabling them to take corrective measures before defects occur.

Moreover, AI-driven IoT enables robust product traceability throughout the manufacturing lifecycle. With real-time data capture and analysis, manufacturers can track and trace raw materials, components, and finished products, ensuring compliance with regulatory standards and enhancing transparency.

TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU

Optimizing Supply Chain Management

The integration of AI-driven IoT technologies in manufacturing extends beyond the factory walls. These technologies are transforming supply chain management, optimizing logistics, and ensuring efficient inventory management. By leveraging real-time data from IoT devices, manufacturers gain visibility into the entire supply chain, enabling accurate demand forecasting, reducing stockouts, and optimizing inventory levels.

The marriage of AI and IoT has brought unprecedented advancements to the manufacturing industry. From enhancing efficiency and productivity to improving quality control and optimizing supply chain management, AI-driven IoT is transforming the way manufacturers operate. With the AI Gateway from TECHBASE, manufacturers can harness the full potential of AI-driven IoT, gaining a competitive edge in an increasingly digital world. Embracing these transformative technologies is crucial for manufacturers to thrive in the era of Industry 4.0.

AI GATEWAY with Coral TPU enhancement 

Neuron network capabilities enhance CM4-based devices, not only collecting and sending data, but also allows local data change predictions and allows direct management on-site. This feature gives the possibility for various applications, such as data analysing and establishing trends predictions, smart alarms and smart monitoring, local notification control, etc.

Used Edge TPU coprocessor via PCI-Express bus is capable of performing 4 trillion operations per second (TOPS), using 0.5 watts for each TOPS (2 TOPS per watt). Google Coral easily integrates with Raspberry Pi Compute Module in Linux and optionally in Windows with full support of TensorFlow Lite framework and AutoML Vision Edge solution.

TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU
TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU

AI GATEWAY with available expansion cards 

AI GATEWAY 9500-CM4 can be equipped with serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer, OLED screen and many more features like TPM Security Chip, eSIM and SuperCap backup power support. 

AI GATEWAY 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem, interchangeable with Coral TPU)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces

ModBerry AI GATEWAY 9500-CM4 availability

First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of AI GATEWAY will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here.

Toit was founded in 2018 by a team of developers who built V8 for Chrome on Google in order to build a generic firmware for IoT devices that will replace the traditional development process. They offer a completely new feature set and a new Python-like programming language developed specifically for IoT. Toit is a high-level object-oriented language with a simple, easy-to-use Python-like syntax that is 20 times faster than MicroPython.

Key Features for Toit IoT Platform:

  • Light and efficient multitasking capabilities on an MCU, enabling complex IoT solutions to work on battery-powered devices.
  • A new high-level object-oriented programming language.
  • A publicly available gRPC API to have full control over your devices.
  • An MQTT-like PubSub API for communicating with other devices over the cloud.
  • Cellular connectivity with NB-IoT / CAT M-1 and out-of-the-box Wi-Fi support
    CLI and SDK support on Windows, macOS, and Linux.
  • VS Code extension for seamless integration with their platform, allowing for faster development.
  • No subscription or provisioning fees

Source: https://www.cnx-software.com/2021/08/06/iot-development-platform-comparision-toit-balena-particle-microsoft-azure-iot/

A look into the features of Toit programming language

Unlike other programming languages used for embedded systems, Toit is a language that was developed solely for IoT. So, it is a dedicated language for IoT that allows for better power management which is important for battery-based systems. Toit features an automatic memory management system which helps to avoid crashes. The new language also comes with a garbage collector, aiding the memory management system. Features like these are not available in traditional programming languages and might be a challenge implementing those using languages like C.

“With Toit, we wanted to create a high-level language that would avoid the limitations of the existing languages used in IoT development. On top of this, the Toit language had to be intuitive to learn and safe to use.” says the Toit team. The syntax of Toit is modern, simple and quite similar to Python. So, a Python developer can easily learn this new language within a few hours and deploy their first application within 15 minutes. Toit is an indentation based language just like Python and has no braces or semicolons. The files are saved with ‘.toit’ extensions and have a VS code language extension for a richer developing experience. So once you start developing with the Toit platform, there’s no coming back.

Source: https://opencloudware.com/toit-platform-redefines-the-way-we-implement-iot-applications/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Toit was founded in 2018 by a team of developers who built V8 for Chrome on Google in order to build a generic firmware for IoT devices that will replace the traditional development process. They offer a completely new feature set and a new Python-like programming language developed specifically for IoT. Toit is a high-level object-oriented language with a simple, easy-to-use Python-like syntax that is 20 times faster than MicroPython.

Key Features for Toit IoT Platform:

  • Light and efficient multitasking capabilities on an MCU, enabling complex IoT solutions to work on battery-powered devices.
  • A new high-level object-oriented programming language.
  • A publicly available gRPC API to have full control over your devices.
  • An MQTT-like PubSub API for communicating with other devices over the cloud.
  • Cellular connectivity with NB-IoT / CAT M-1 and out-of-the-box Wi-Fi support
    CLI and SDK support on Windows, macOS, and Linux.
  • VS Code extension for seamless integration with their platform, allowing for faster development.
  • No subscription or provisioning fees

Source: https://www.cnx-software.com/2021/08/06/iot-development-platform-comparision-toit-balena-particle-microsoft-azure-iot/

A look into the features of Toit programming language

Unlike other programming languages used for embedded systems, Toit is a language that was developed solely for IoT. So, it is a dedicated language for IoT that allows for better power management which is important for battery-based systems. Toit features an automatic memory management system which helps to avoid crashes. The new language also comes with a garbage collector, aiding the memory management system. Features like these are not available in traditional programming languages and might be a challenge implementing those using languages like C.

“With Toit, we wanted to create a high-level language that would avoid the limitations of the existing languages used in IoT development. On top of this, the Toit language had to be intuitive to learn and safe to use.” says the Toit team. The syntax of Toit is modern, simple and quite similar to Python. So, a Python developer can easily learn this new language within a few hours and deploy their first application within 15 minutes. Toit is an indentation based language just like Python and has no braces or semicolons. The files are saved with ‘.toit’ extensions and have a VS code language extension for a richer developing experience. So once you start developing with the Toit platform, there’s no coming back.

Source: https://opencloudware.com/toit-platform-redefines-the-way-we-implement-iot-applications/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Toit was founded in 2018 by a team of developers who built V8 for Chrome on Google in order to build a generic firmware for IoT devices that will replace the traditional development process. They offer a completely new feature set and a new Python-like programming language developed specifically for IoT. Toit is a high-level object-oriented language with a simple, easy-to-use Python-like syntax that is 20 times faster than MicroPython.

Key Features for Toit IoT Platform:

  • Light and efficient multitasking capabilities on an MCU, enabling complex IoT solutions to work on battery-powered devices.
  • A new high-level object-oriented programming language.
  • A publicly available gRPC API to have full control over your devices.
  • An MQTT-like PubSub API for communicating with other devices over the cloud.
  • Cellular connectivity with NB-IoT / CAT M-1 and out-of-the-box Wi-Fi support
    CLI and SDK support on Windows, macOS, and Linux.
  • VS Code extension for seamless integration with their platform, allowing for faster development.
  • No subscription or provisioning fees

Source: https://www.cnx-software.com/2021/08/06/iot-development-platform-comparision-toit-balena-particle-microsoft-azure-iot/

A look into the features of Toit programming language

Unlike other programming languages used for embedded systems, Toit is a language that was developed solely for IoT. So, it is a dedicated language for IoT that allows for better power management which is important for battery-based systems. Toit features an automatic memory management system which helps to avoid crashes. The new language also comes with a garbage collector, aiding the memory management system. Features like these are not available in traditional programming languages and might be a challenge implementing those using languages like C.

“With Toit, we wanted to create a high-level language that would avoid the limitations of the existing languages used in IoT development. On top of this, the Toit language had to be intuitive to learn and safe to use.” says the Toit team. The syntax of Toit is modern, simple and quite similar to Python. So, a Python developer can easily learn this new language within a few hours and deploy their first application within 15 minutes. Toit is an indentation based language just like Python and has no braces or semicolons. The files are saved with ‘.toit’ extensions and have a VS code language extension for a richer developing experience. So once you start developing with the Toit platform, there’s no coming back.

Source: https://opencloudware.com/toit-platform-redefines-the-way-we-implement-iot-applications/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

AI influence on IoT developers and their working installations

Raspberry Pi based controller with Modbus, M-Bus & MQTT support

Raspberry Pi Compute Module 3+ based ModBerry industrial computer series use latest Compute Module 3+, powered by Quad-core Cortex-A53 1.2GHz processor, 1024MB LPDDR2 RAM and up to 32GB Flash eMMC. The module increase the device’s performance up to ten times, maintaining low power consumption and optimal price of the solution. Raspberry Pi based ModBerry features industrial protocol support, e.g. Modbus, M-Bus, SNMP, MQTT and the possibility to add new protocols with ease.

ModBerry protocol modularity

ModBerry remote management

The iMod platform guarantees a quick start and full use of the ModBerry computer, without the need to write complicated software. One of the main advantages of the iMod platform is its ease of use and variety of available functionalities. Due to the available SDK, the platform can be extended with new, dedicated functionalities.

iMod can be installed directly onto ModBerry device or using external PC outside the installation (iModBOX). The third option is using dedicated hosting server to host the iMod software (iModHOST).

iModCloud Ecosystem

Another product is iModCloud software-service, which enables full control of ModBerry/iMod devices. Together they form a stand-alone solution – iModCloud Ecosystem, a combination of cloud services with web-based user interface and industrial devices, fully manageable remotely.

iModCloud can be hosted externally, using stable DELL servers to host the cloud service.(iModCloudHOST). For higher data security or depending on project features, iModCloud can be hosted internally, inside the installation (iModCloudBOX) hosted by the dedicated Mini-PC or from portable memory stick (iModCloudSTARTER).

More information Raspberry Pi based industrial device

TECHBASE provides solutions for industrial automation, telemetry, remote access and integration with IT systems. Since 2012 the company has been actively developing its competences in the market. Due to an innovative approach – based on the use of cutting-edge technologies, open standards and easy to maintain products – the company has earned the trust of Customers all over the world.

TECHBASE’s mission is to provide our Customers with tools, which will shorten and simplify the process of system implementation. With open architecture and high level of configurability, maintenance of a system is not expensive anymore.

To read more about ModBerry 500 M3 solution, download PDF datasheet: http://a2s.pl/products/ModBerry/ModBerry_500M3_EN.pdf
Read more about all ModBerry Industrial Solutions at: https://modberry.techbase.eu/

ModBerry hardware modularity

ModBerry 500 hardware modularity

The main features of ModBerry Industrial Computers series are the extension capabilities to increase input/output number, add up to 4 internal wireless communication modems and modules, support additional features such as accelerometer or opto-isolation options.

ModBerry 500 series offers wide range of industrial interfaces e.g.: digital inputs/outputs, analog inputs/outputs, relay outputs, serial RS-232/485 ports, Ethernet, 1-Wire, CAN, USB 2.0, HDMI, LTE/3G/GPRS, NarrowBand IoT/LTE, GPS, ZigBee, WiFi, Bluetooth, LoRa and many more via extension modules.

Raspberry Pi based controller with Modbus, M-Bus & MQTT support

Raspberry Pi Compute Module 3+ based ModBerry industrial computer series use latest Compute Module 3+, powered by Quad-core Cortex-A53 1.2GHz processor, 1024MB LPDDR2 RAM and up to 32GB Flash eMMC. The module increase the device’s performance up to ten times, maintaining low power consumption and optimal price of the solution. Raspberry Pi based ModBerry features industrial protocol support, e.g. Modbus, M-Bus, SNMP, MQTT and the possibility to add new protocols with ease.

ModBerry protocol modularity

ModBerry remote management

The iMod platform guarantees a quick start and full use of the ModBerry computer, without the need to write complicated software. One of the main advantages of the iMod platform is its ease of use and variety of available functionalities. Due to the available SDK, the platform can be extended with new, dedicated functionalities.

iMod can be installed directly onto ModBerry device or using external PC outside the installation (iModBOX). The third option is using dedicated hosting server to host the iMod software (iModHOST).

iModCloud Ecosystem

Another product is iModCloud software-service, which enables full control of ModBerry/iMod devices. Together they form a stand-alone solution – iModCloud Ecosystem, a combination of cloud services with web-based user interface and industrial devices, fully manageable remotely.

iModCloud can be hosted externally, using stable DELL servers to host the cloud service.(iModCloudHOST). For higher data security or depending on project features, iModCloud can be hosted internally, inside the installation (iModCloudBOX) hosted by the dedicated Mini-PC or from portable memory stick (iModCloudSTARTER).

More information Raspberry Pi based industrial device

TECHBASE provides solutions for industrial automation, telemetry, remote access and integration with IT systems. Since 2012 the company has been actively developing its competences in the market. Due to an innovative approach – based on the use of cutting-edge technologies, open standards and easy to maintain products – the company has earned the trust of Customers all over the world.

TECHBASE’s mission is to provide our Customers with tools, which will shorten and simplify the process of system implementation. With open architecture and high level of configurability, maintenance of a system is not expensive anymore.

To read more about ModBerry 500 M3 solution, download PDF datasheet: http://a2s.pl/products/ModBerry/ModBerry_500M3_EN.pdf
Read more about all ModBerry Industrial Solutions at: https://modberry.techbase.eu/

ModBerry hardware modularity

ModBerry 500 hardware modularity

The main features of ModBerry Industrial Computers series are the extension capabilities to increase input/output number, add up to 4 internal wireless communication modems and modules, support additional features such as accelerometer or opto-isolation options.

ModBerry 500 series offers wide range of industrial interfaces e.g.: digital inputs/outputs, analog inputs/outputs, relay outputs, serial RS-232/485 ports, Ethernet, 1-Wire, CAN, USB 2.0, HDMI, LTE/3G/GPRS, NarrowBand IoT/LTE, GPS, ZigBee, WiFi, Bluetooth, LoRa and many more via extension modules.

The latest research results from IoT Newark developers reveal that 49% of respondents use AI in their IoT applications. There is also a growing concern about user privacy and the more frequent introduction of ready equipment.

35% of respondents think security is the major concern for any IoT implementation, mainly due to the type of data collected from the things (machines) and humans, which is very sensitive & personal. We can expect to see more and more encryption everywhere. Businesses who initiate IoT projects treat IoT security as their top priority.

SBCs the main platform for Industrial IoT

SBC is still the preferred hardware foundation for IoT gates, then 54%, followed by personal projects (30%) and silicon supplier platforms (13%). It is unclear whether the latter includes a commercial computing module. As shown in the graph above, many IoT programmers need third party help, especially for edge-to-cloud communication.

About 45% of respondents use environmental sensors for IoT devices, followed by motion sensors (26%) and optical / image sensors (15%). WiFi (67%) is the most popular wireless technology in Internet of Things projects. The next places are Low cellular energy and Bluetooth, followed by LoRa at 21%. The survey results also include responses to programming languages, cloud platforms, IoT data, project motivation and more.

Artificial Intelligence influencing Industrial IoT

From the end of 2017 to 2018, artificial intelligence-specific processors (AI) began to appear on mobile devices. The goal is to make smartphones more intelligent. As GPUs shrink, AI-related equipment becomes necessary for the Internet of Things.

Support for enterprises from platforms such as Google TensorFlow will be introduced in 2020 with equipment adapted to artificial intelligence. TensorFlow is already optimized for mobile devices and can be quickly launched on single-board computers. In many ways, AI frameworks are better than other mobile frameworks, such as ReactJS. The AI structure is not designed to work with the user interface. It’s perfect for the Internet of Things.

Until the end of 2020, artificial intelligence will be as important for IoT devices as the cloud.

Hyperautomation is a process in which businesses automate as numerous commerce and IT forms as conceivable utilizing apparatuses like AI, machine learning, event-driven computer program, mechanical process automation, and other sorts of choice prepare and task automation instruments.

It is the key to both computerized operational greatness and operational resiliency for organizations. To empower this, organizations had to digitize their documents/artifacts and guarantee their trade and IT process workflows were advanced. They got to mechanize tasks, processes and coordinate computerization over utilitarian zones.

Hyperautomation is irreversible and inevitable. Everything that can and should be automated will be automated.

Brian Burke, Research Vice President, Gartner

Gartner prepared a Tech Trends 2021 summary with key features of the constantly changing market. Read more at: https://www.gartner.com/en/information-technology/trends/top-strategic-technology-trends-iot-gb-pd

Industrial IoT market evolution

Data generated over the Internet of Things is growing exponentially faster than the traditional cloud environment where data is stored, so just the amount of data can justify the acceleration. In addition, in the cloud as the destination, problems related to data transfer (delay and bandwidth) occur, so travel speed is the main issue. This edge is necessary as a solution to the inefficiency of IIoT to Cloud architecture.

Fast data processing of Industrial IoT devices

When industrial IoT devices and edge processing work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, such as a smart meter, a parking meter or a connected trash can in a street apartment. The installation of sensors with internet access in metropolitan garbage containers is becoming increasingly common for smart urban engineers. You can then remotely monitor the container using the sensor. When it is full, the city sanitation service receives a notification and can register an order and empty the container.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry AI GATEWAY with Raspberry Pi CM4 and Google Coral

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.