Technology must transfer data to the central system in real time, otherwise it may have negative consequences. If the sensor battery power runs out, a machine failure may stop production for one day or lead to direct danger. If battery life is unbelievable and short, IoT applications will become useless, causing more interference rather than making life easier for its intended purpose. Therefore battery powered IoT devices come as a standard in up-to-date IoT installations

Wireless sensors and sensor networks are one of the elements of the Internet of Things systems and intelligent factories. Replacing the standard sensors and data collection devices with versions that communicate wirelessly gives many benefits, but also enforces a highly thought-out system design that will minimize energy consumption. This is important because these systems must work for many years without servicing. In the article we present the issues regarding the design of systems and forecasting of energy consumption in IoT systems.

Wireless communication vs Battery power

The idea of wireless sensor networks has been around for at least two decades, while the IEEE subgroup working on personal wireless networks defined the 802.15.4 standard in 2003, a year later the first versions of ZigBee appeared. Since then, many varieties of wireless communication have been developed, such as LoRa & NarrowBand-IoT and additional functions introduced, as a result of which designers now have a choice of various open or proprietary protocols. What significantly affects the way the entire project is implemented is energy consumption.

Battery powered IoT installation. Source: https://modberry.techbase.eu/

The basic elements of these systems are sensors that measure physical quantities. Some signal and data processing capabilities are also important. After all, the communication interface is important, which will allow you to pass the measured data on. Such a sensor node should wake up from time to time, make contact with its superordinate controller, transfer data and fall back to sleep again. Battery life depends on the total charge collected. Minimizing this consumption in the long run means that you need to minimize energy consumption during each work cycle. In many cases, the sensor will only work for a small fraction of the time. A measurement that lasts a few milliseconds can be triggered once per second, once per minute, or even less frequently. Therefore, the energy consumed in sleep mode may dominate the total energy consumption.

Battery powered sensors market growth

The lifetime of IoT sensors varies greatly: some last a year years, others 10, the first being the most realistic. When organizations need to deploy engineers to install new batteries in sensors and employ staff to monitor them, the benefits of technology itself are beginning to run out.

Battery powered IoT devices crucial to 2020+ standards

It is estimated that in 2020 nearly 31 billion devices will be connected to the Internet of Things. Such forecasts provide ample opportunities, especially for producers associated with the products that make up it, and they are intensified by the developing IoT technology.

Source: https://globenergia.pl/co-laczy-internet-rzeczy-i-perowskity-fotowoltaika-do-zastosowan-wewnetrznych/

Battery-ready IoT devices based on ESP32

Battery / SuperCap power support allows the processes and data to be securely executed, saved or transferred, and the operating system to be safely shutdown or reboot, if the power source has been restored. The power failure alert can also be sent to cloud service, to perform custom task, specified by user or self-learning AI algorithm.

The Moduino device is a comprehensive end-point controller for variety of sensors located throughout any installation. It fully supports temperature and humidity sensors and new ones are currently developed, e.g. accelerometer, gyroscope, magnetometer, etc.

Battery powered Moduino ESP32
Battery powered IoT installation. Source: https://modberry.techbase.eu/

ModuinoModBerry symbiosis allows wide range of wake-up/sleep schedule customization, in order to perform best and save energy accordingly to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using schedule/timer. Another option is wake on external trigger, e.g. change of input, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.

EB (Elektrobit) announced new features and functions in the EB GUIDE. This makes the Advanced Human Machine Interface (HMI) more accessible and convenient than ever to a wider range of developers.

EB provides the EB GUIDE Development Toolkit (SDK) specifically for the Raspberry Pi OS. This allows users of Raspberry Pi devices, one of the most accessible and popular embedded systems development platforms worldwide, to take advantage of the user-friendly features of EB GUIDE to make them extremely simple and efficient. The HMI can be developed. How to do it. This EB GUIDE SDK for Raspberry Pi OS is available to users for free and gives you the opportunity to see how easy it is to model HMI with EB GUIDE.

We are excited to make our unique HMI development toolchain even more capable and available to a broader group of designers and developers,” said Bruno Grasset, Head of Product Management User Experience, Elektrobit. “There are more than 30 million Raspberry Pi devices in use around the world. Pairing our advanced software with the versatile, budget-friendly Raspberry Pi development platform will accelerate innovation, allowing pros and students alike to easily create the world’s most advanced user interfaces.

Source: https://www.elektrobit.com/ebguide/blog/enhanced-flexibility-capability-eou-of-hmi-development-software/
 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Industrial use of Raspberry Pi Compute Module 3+

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. One of the options is SuperCap power support.

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Power Management HAT with RTC for Raspberry Pi

If you’re looking for a useful tool for long-lasting Raspberry Pi, such as longer battery life or automatic power on / off, this HAT power management is the perfect choice.

This HAT can significantly increase battery life by automatically starting the device for a certain time and automatically switching it off at another time. It can be configured to monitor the Raspberry Pi voltage / current status in real time and turn off the Pi according to the operating status. In addition, the kit includes a convenient power switch for easy on / off (soft shutdown of Pi by software), preventing data loss due to power disconnection.

Raspberry Pi Power Management HAT specification

  • MCU – Microchip ATmega328P-AU MCU
  • Storage – CAT24C32 EEPROM
  • USB – 1x micro USB port for serial communication via CP2102 UART to TTL chip
  • RPi Interface – 40-pin Raspberry Pi GPIO header
  • Misc
    • NXP PCF8523 RTC & calendar chip + CR1220 battery holder
    • DEBUG switch (9) to either:
      1. Power directly Raspberry Pi board
      2. Let the “Arduino” MCU manage the power supply
    • UART selection (15)
      • A – Access Arduino via USB to UART
      • B – Control the Raspberry Pi by Arduino
      • C – Access Raspberry Pi via USB to UART
    • Power/User and Reset buttons
    • Status and Power LEDs
  • Power Supply
    • PH2.0 connector for 7~28V regulated power supply or lithium battery
    • Monolithic Power MP1584 switching regulator
    • Protection circuits such as reverse-polarity, overcurrent, etc…
    • Voltage/current monitoring circuits
  • Dimensions – 65 x 56.5 mm (Raspberry Pi HAT)

Source: https://www.cnx-software.com/2019/12/18/raspberry-pi-power-management-hat-adds-rtc-battery-management-software-on-off/

Industrial use of Raspberry Pi Compute Module 3+

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. One of the options is SuperCap power support.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Battery powered IoT devices crucial to 2020+ standards

Technology must transfer data to the central system in real time, otherwise it may have negative consequences. If the sensor battery power runs out, a machine failure may stop production for one day or lead to direct danger. If battery life is unbelievable and short, IoT applications will become useless, causing more interference rather than making life easier for its intended purpose. Therefore battery powered IoT devices come as a standard in up-to-date IoT installations

Wireless sensors and sensor networks are one of the elements of the Internet of Things systems and intelligent factories. Replacing the standard sensors and data collection devices with versions that communicate wirelessly gives many benefits, but also enforces a highly thought-out system design that will minimize energy consumption. This is important because these systems must work for many years without servicing. In the article we present the issues regarding the design of systems and forecasting of energy consumption in IoT systems.

Wireless communication vs Battery power

The idea of wireless sensor networks has been around for at least two decades, while the IEEE subgroup working on personal wireless networks defined the 802.15.4 standard in 2003, a year later the first versions of ZigBee appeared. Since then, many varieties of wireless communication have been developed, such as LoRa & NarrowBand-IoT and additional functions introduced, as a result of which designers now have a choice of various open or proprietary protocols. What significantly affects the way the entire project is implemented is energy consumption.

Battery powered IoT installation. Source: https://modberry.techbase.eu/

The basic elements of these systems are sensors that measure physical quantities. Some signal and data processing capabilities are also important. After all, the communication interface is important, which will allow you to pass the measured data on. Such a sensor node should wake up from time to time, make contact with its superordinate controller, transfer data and fall back to sleep again. Battery life depends on the total charge collected. Minimizing this consumption in the long run means that you need to minimize energy consumption during each work cycle. In many cases, the sensor will only work for a small fraction of the time. A measurement that lasts a few milliseconds can be triggered once per second, once per minute, or even less frequently. Therefore, the energy consumed in sleep mode may dominate the total energy consumption.

Battery powered sensors market growth

The lifetime of IoT sensors varies greatly: some last a year years, others 10, the first being the most realistic. When organizations need to deploy engineers to install new batteries in sensors and employ staff to monitor them, the benefits of technology itself are beginning to run out.

Battery powered IoT devices crucial to 2020+ standards

It is estimated that in 2020 nearly 31 billion devices will be connected to the Internet of Things. Such forecasts provide ample opportunities, especially for producers associated with the products that make up it, and they are intensified by the developing IoT technology.

Source: https://globenergia.pl/co-laczy-internet-rzeczy-i-perowskity-fotowoltaika-do-zastosowan-wewnetrznych/

Battery-ready IoT devices based on ESP32

Battery / SuperCap power support allows the processes and data to be securely executed, saved or transferred, and the operating system to be safely shutdown or reboot, if the power source has been restored. The power failure alert can also be sent to cloud service, to perform custom task, specified by user or self-learning AI algorithm.

The Moduino device is a comprehensive end-point controller for variety of sensors located throughout any installation. It fully supports temperature and humidity sensors and new ones are currently developed, e.g. accelerometer, gyroscope, magnetometer, etc.

Battery powered Moduino ESP32
Battery powered IoT installation. Source: https://modberry.techbase.eu/

ModuinoModBerry symbiosis allows wide range of wake-up/sleep schedule customization, in order to perform best and save energy accordingly to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using schedule/timer. Another option is wake on external trigger, e.g. change of input, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.