A few years ago, Qualcomm launched the Snapdragon 212 processor for smart speakers. This post has nothing to do with this, but strangely enough, the company has decided to reuse the 212 number in its new Qualcomm 212 LTE IoT modem, „World’s most power-efficient single-mode 3GPP Release 14 NB2 (NB-IoT) modem„, as read.

Qualcomm 212 LTE IoT modem requires less than 1 microamp (1uA) sleep current and has a very low cutoff at system level (on the order of 2.2V) with the ability to adjust energy consumption for various source power levels It is said to support voltage.

Qualcomm 212 LTE IoT Modem specifications:

  • MCU Core – Arm Cortex M3 @ up to 204 MHz
  • Cellular Connectivity
    • 3GPP Rel.14 LTE capabilities: Cat-NB2 with multi-carrier NPRACH and Paging, Cat-NB2 Release Assistance Indication (RAI), Cat-NB2 with larger TBS and 2 HARQ processes
    • Peak Speeds – DL: 127 kbps; UL: 158.5 kbps
    • Frequency Bands (700Mhz to 2.1 GHz for global roaming)
      • LTE low bands: B5, B68, B8, B12, B13, B14, B17, B18, B19, B20, B26, B28, B71, B85
      • LTE mid bands: B1, B65, B70, B2, B25, B66, B3, B4
    • Global Emergency Services Support – ECID, OTDOA (LTE-based positioning)
  • Network Protocols – IPv4/IPv6 stack with TCP and UDP, TLS, HTTPS, PPP, SSL, DTSL, FTP, ping, HTTTP, MQTT, OMA Lightweight M2M, CoAP
  • I/O Interfaces – 2x I2C, 2x SPI, 3x UART, up to 26 GPIOs, 4-channel ADC
  • Security – Hardware-based Crypto Engine, Secure Key provisioning, Secure Boot
  • Integrated Chipsets
    • Qualcomm 9205 baseband IC
    • SMB231 charger IC
    • PME9205 power management IC
    • SDR105 radio transceiver and front-end IC
    • WCD9306 audio codec IC
  • Supply Voltage – 2.2V to 4.5V
  • Temperature Range – -40 to 85°C
  • Package – < 10x10mm

Source: https://www.qualcomm.com/products/qualcomm-212-lte-modem

Industrial use of LTE modems

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. ModBerry supports wide range of industrial grade extension cards, i.e. wireless modems with 3G/LTE, NarrowBand-IoT, LoRa, Wireless M-Bus, ZigBee, WiFi, Bluetooth and many more.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Bulgarian open equipment specialist, Olimex, has started stocking compact modules to add Low-Power NarrowBand-IoT (NB-IoT) connectivity (LPWAN) to the project: the NB-IoT-BC66 family.

NB-IoT is low power wide area networking technology which uses existing GSM LTE technology and has many advantages versa LoRa,” the company explains. „GSM network quality of service; single GSM cell can talk to up to 100,000 devices; high; communication speed 25.5kbps up and downlink; secure communication using LTE encryption; better range than LoRa both in urban and rural area (* depend on cell operating frequency – best range is on 850MHz.)

Source: https://olimex.wordpress.com/2020/04/07/new-nb-iot-bc66-modules-with-size-only-26×26-mm-contain-everything-you-need-to-add-nb-iot-functionality-in-your-next-project/

Olimex has launched four NB-IoT breakout boards. They are all based on the Quectel BC-66 module. NB-IoT-BC66 is the basic model, NB-IoT-BC66-ANT includes an attached GSM antenna, NB-IoT-BC66H contains a pre-soldered header, NB-IoT-BC66 and NB-IoT-BC66H-ANT combines both a soldered header and an attached antenna.

Olimex BC66 breakout board’s features and specifications:

  • NB-IoT Connectivity
    • Quectel BC-66 with worldwide GSM bands coverage
    • 25.5 kbps uplink and downlink
    • nano SIM card slot
    • u.FL antenna connector + optional antenna
  • I/O Expansion – 3x 10-pin header either unpopulated or fitted with male headers; Level shifters for 5x GPIOs, I2C, SPI, UART
  • Misc – Status LEDs
  • Power Supply –
  • Dimensions – 26×26 mm

Source: https://www.cnx-software.com/2020/04/08/olimex-quectel-bc66-breakout-board/

eModGATE with ESP32

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

NXP Semiconductors recently announced the launch of a comprehensive Wi-Fi 6 (802.11ax) product portfolio, which greatly expands the market range of products that can adopt the latest Wi-Fi standard. NXP ’s expanded Wi-Fi 6 product portfolio demonstrates NXP ’s vision and differentiated technology approach for new end-to-end solutions designed to help the automotive, access, mobile, industrial, and Internet of Things markets embrace the era of connected innovation.

Rafael Sotomayor, senior vice president of NXP Semiconductors ’Security and Connectivity Division, said that in order to provide Wi-Fi 6 to a wider market, OEMs need Wi-Fi 6 options that can meet their needs. They need product series that can meet the performance and cost needs of different market segments. With NXP ’s latest connectivity solutions, we help customers to more easily invest in our Wi-Fi 6 platform, and then use Wi-Fi 6 for smart homes, connected cars and industrial machinery. We are very pleased to see these markets gain the advantages of Wi-Fi 6 networking.

New Wi-Fi 6 addition to NPX’s portfolio

Wi-Fi 6 adds many improvements to the connection, including symmetric multi-gigabit (multi-gigabit) upload and download, significantly reducing latency, increasing capacity, and improving power efficiency across applications. As of now, these technological advancements have been limited to high-end products. Through NXP ’s extensive product portfolio, these advantages can now be applied to large-scale deployments in multiple markets, giving products the most advanced Wi-Fi capabilities, including up to four times the performance improvement, wider coverage, extended battery life, Connection reliability is higher.

In addition, the focus of NXP ’s Wi-Fi 6 product portfolio includes its leading 4 × 4 and 8 × 8 streaming solutions integrated with Bluetooth 5 (Bluetooth 5), suitable for home and enterprise access solutions (88W9064, 88W9068), AEC-Q100-compliant dual-frequency parallel (Concurrent Dual) Wi-Fi 2 × 2 + 2 × 2 + Bluetooth 5 solution, designed for the highest performance infotainment and remote information processing automotive applications (88Q9098) , Dual-band parallel Wi-Fi 2 × 2 + 2 × 2 + Bluetooth 5 solution, providing top-level products (88W9098) for multimedia streaming and consumer access applications, 2 × 2 WiFi 6 + Bluetooth 5 focusing on the Internet of Things, Reduce costs and improve power, and NXP ’s Silicon Germanium (SiGe) -based RF front-end solution portfolio can extend Wi-Fi 6 functionality from low-end to high-end applications, including 1 × 1, 2 × 2, 4 × 4 and 8 × 8 MIMO (Multiple Input Multiple Output) solutions. The product portfolio is packaged in ultra-compact 3 mm x 4 mm modules optimized for mobile solutions.

Source: https://media.nxp.com/news-releases/news-release-details/nxps-new-wi-fi-6-portfolio-accelerates-its-large-scale-adoption/

What is Wi-Fi 6?

The Wi-Fi 6 standard enables enterprises and service providers to support new and emerging applications within the same wireless LAN (WLAN) infrastructure while ensuring higher standards of support for older applications. This scenario prepares the ground for new business models and increased use of Wi-Fi.

Upcoming Wi-Fi 6 and Wi-Fi 7 forecast for industrial IoT
Source: TP-Link

This is exactly the same standard as 802.11ax. The Wi-Fi Alliance has launched a campaign to give the IEEE 802.11ax standard the name „Wi-Fi 6”. This name suggests that this standard is a 6th generation Wi-Fi network. The justification for this idea was to simplify the marketing message of the 802.11ax standard in order to gain an image advantage over the standards of the Third Generation Partnership Project (3GPP) used in cellular network technology (e.g. 5G).

Expectations about Wi-Fi 7 standard

During a speech during the August Wi-Fi Qualcomm Day and subsequent interviews, V.K. Jones, vice president of technology, shared details about the operation of Wi-Fi 7. He expects a three-step improvement over today’s Wi-Fi 6, called 802.11ax in the world of technology.

The first improvement expected will increase Wi-Fi 6 bandwidth and use new radio waves that will allow the governments of the United States and Europe to start wireless transmission soon next year. Secondly, the Wi-Fi 6 update in 2022 should improve speed, especially for those who transfer data such as videos from phones and computers. The third, and perhaps the most interesting, is the Wi-Fi update collection expected in 2024, known only under the technical name 802.11be.

The leader of LoRa and RF technology, Semtech will continue to support the LoRa ecosystem by introducing a new portfolio of solutions called LoRa Edge to simplify and accelerate IoT applications for edges. LoRa Edge is a new, versatile, new low-power LoRa platform that enables a wide range of indoor and outdoor asset management applications in the industrial, construction, housing, agricultural, transport and logistics markets.

Semtech continually delivers Internet of Things (IoT) solutions that simplify and accelerate the development of LPWAN applications,” said Pedro Pachuca, Director of IoT Wireless in Semtech’s Wireless and Sensing Products Group. “LoRa Edge and LoRa Cloud geolocation services enable customers to develop ultra-low-power applications for a variety of industries and will expand the mass adoption of LoRa in the IoT ecosystem.

Source: https://www.semtech.com/company/press/semtech-releases-a-new-portfolio-of-solutions-lora-edge-to-simplify-and-accelerate-iot-applications
Semtech's LoRa Edge introducing new LR1110 chip

LoRa Edge LR1110 features

Multi-Purpose Radio Front-End

  • 150 – 2700 MHz continuous frequency synthesizer range
  • GPS/BeiDou scanning
  • Wi-Fi passive scanning

Low-Power LoRa/(G)FSK RF Transceiver

  • Worldwide frequency bands support in the range 150 – 960 MHz
  • High power PA path +22 dBm
  • High efficiency PA path +15 dBm
  • Fully compatible with the LoRaWAN® standard

Cryptographic Engine

  • Hardware support for AES-128 encryption/decryption based algorithms
  • Handling device parameters such as DevEUI and JoinEUI
  • Protects confidential information such as encryption keys
  • Stores NwkKey, AppKey, as defined in the LoRaWAN standard

Use of LoRa in industrial automation

Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.

Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as ModBerry industrial device from TECHBASE.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. The M-Bus wireless bus has been developed as a standard to meet the needs of the European network of media meters and remote reading systems and forms the basis of a new advanced measurement infrastructure (AMI). The frequency of M-Bus and sub-GHz wireless connections has been used for several years, but is still evolving to adapt to changing environments and take advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Intelligent network devices require robust long-range wireless communication. The most common frequencies are around 868 MHz, 434 MHz and 169 MHz, which are unlicensed bands in Europe and offer better radio wave propagation compared to 2.4 GHz. By using one of these unlicensed bands, radio waves can reach difficult areas such as underground meters or the location of buildings with many walls or obstacles. Another advantage of operating in the unlicensed band is that utilities have lower solution costs.

COVID-19 and wireless technologies

In times of COVID-19 pandemic hazards, the use of wireless technologies is often a must, to prevent further spread of the coronavirus. One of obvious choices for Internet of Things and home monitorng is Wireless M-Bus implementation.

TECHBASE has added high performance module for Wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

ESP32-based LoRa / LoRaWAN wireless network

One way of long-range and low-power data transmission is LoRa wireless technology. Since the Internet of Things market (with ESP32 – based solutions) is mainly covered with short-range Wi-Fi and Bluetooth and long-range with 3G / NarrowBand-IoT technologies, LoRa oftens is omitted or simply unknown by IoT users. Below you will find a short representation of what LoRa is and how can it be used.

What is LoRa / LoRAWAN network?

LoRaWAN® network architecture is deployed in a star-of-stars topology in which gateways relay messages between end-devices and a central network server. The gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the Long Range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and there is support for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.

Source: https://lora-alliance.org/about-lorawan

Industrial use of LoRa & ESP32-based solutions

One of industrial IoT devices, supporting LoRa wireless technology is ESP32 based eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Sigfox announces changes improving IoT applications

First major announcement is that Sigfox will launch a private network (PAN) that will allow IoT customers to choose private and global services according to their needs. The service will be launched for the first time in France in the first quarter of 2020, but Sigfox will be implemented in over 65 countries.

The operator’s wide area network (WAN) will be completed next year in cooperation with Eutelsat. Sigfox provides coverage worldwide using the nano-satellite constellation launched by Eutelsat.

The Sigfox PAN offer will benefit from the existing Sigfox WAN ecosystem. Thanks to the potential to use all components on the market and the use of very low transmit power to support facilities without the need for batteries, the Sigfox PAN offer offers enormous potential,

Ludovic Le Moan, CEO and co-founder of Sigfox.

According to Sigfox, by the end of 2019, there will be more than 15 million registered facilities and over 1,500 customers using this solution in various industries around the world. Sigfox says that PAN customers can expect the same as WAN customers in terms of support and quality. PAN clients can choose to subscribe to additional „WAN Extension” services if needed if the device needs to communicate outside the local network.

Sigfox improving the accuracy of Atlas geolocation services

Internet of Things operators have now launched Atlas Native Complimentary. It is made available free of charge in exchange for the rights to process data regarding GPS data. These data are compared to the fingerprint of the Sigfox network using machine learning, which increases accuracy to 800 meters.

To further increase the accuracy of its geolocation services, Sigfox said it has completed the global implementation of Atlas WiFi in collaboration with HERE Technologies’ mapping experts.

Sigfox uses the global WiFi access point database here. Access points are checked by the Sigfox WiFi tracking module and more closely track the location of external and internal resources with less battery consumption than using GPS.

We are delighted to strengthen our partnership with Amadeus and share our combined expertise to create real digital transformation of the travel sector. Our strategic alliance named PinPoint will not only help to improve the travel experience, but this will also change completely the game for an industry looking for decades for THE technology able to save costs while improving efficiency and quality of services

Raouti Chehih, Chief Adoption Officer at Sigfox

The first services from the strategic alliance are expected to hit the market in 2020.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Sigfox wireless technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
New release of OpenWRT 19.07 for WLAN devices

Good news for developers and modders of router software. A new Linux distribution, OpenWRT 19.07 has just been released, created primarily for WLAN devices, which debuted with the iconic Linksys WRT54G routers. OpenWrt 19.07 is mainly developed for devices using the AVR32, ARM, CRIS, m68k, MIPS, PowerPC, SPARC, SuperH, Ubicom32, x86 and x86-64 architecture.

What’s new in OpenWrt 19.07

A lot changed from the previous version of OpenWrt 18.06 version. Even WPA3 support has been added. However, it is not enabled by default and requires the installation of additional packages. Hostapd-openssl is needed for WPA3 to work in access point mode, it will need wpa-supplicant-openssl or wpad-openssl (additional AP) to use in Wi-Fi station mode.

Software developers have decided to switch to ath79 from ar71xx – in the future support for ar71xx will be completely withdrawn. In addition, the Linux kernel has been updated to version 4.14.162, and support for adm5120, adm8668, ar7, au1000, ixp4xx, mcs814x, omap24xx, ppc40x, ppc44x and xburst has been terminated.

A new feature is the updated LuCI, an integrated web interface for OpenWRT that implements client-side rendering. The LuCI ecosystem is large and not all LuCI applications have been adapted for this change, which can cause cbi.lua crashes. If so, install the luci-compat package.

The latest version of software can be downloaded from the project’s official website, here where you can also find the full list of changes.

Why should you try OpenWRT?

People who like to modify soft routers will confirm: OpenWRT dramatically increases the capabilities of network devices. OpenWRT is several thousand software packages that advanced users can install or remove depending on their needs. The software also improves network security – after all, the router owner will have full control over the configuration of every aspect of the hardware.

Industrial use of OpenWRT-based solutions

One of industrial IoT devices, supporting the technology and it’s varieties is ModBerry M series from TECHBASE. Economical, M300 model, based on NanoPi boards can serve as an OpenWRT modem, with optional changes in standard ModBerry controller. For more information check Industrial IoT Shop with all the configuration options for ModBerry M series .

Realtek RTL8720DN Dual-Band WiFi & BT 5.0 vs ESP32

IoT market ofers wide range of small and efficient modules for Home & Industrial Internet of Things applications, equipped with 2.4GHz Wi-Fi, such as Espressif’s ESP32 or older ESP8266 modules. Additional Bluetooth 4.2/5.0 is often found on those. Dual-band Wi-Fi, on the other hand, is hard to find on low-budget IoT modules. Here comes Realtek RTL8720DN.

Realtek RTL2720DN module, as a part of AmebaD family, comes with ARM Cortex-M4/M0 wireless MCU with support of 802.11 b/g/n Dual-Band Wi-Fi 2.4GHz / 5GHz and extra Bluetooth 5.0 wireless connectivity.

Realtek RTL8720DN Dual-Band WiFi & Bluetooth 5.0 module

Realtek RTL8720DN specifications:

  • Wireless SoC – Realtek RTK8720DN MCU with KM4 Arm Cortex-M4 core @ 200 MHz and KM0 Arm Cortex-M0 core @ 20 MHz
  • Connectivity
    • WiFi
      • 802.11 a/b/g/n WiFi 4
      • Frequency Range – 2.412-2.484GHz & 5.180-5.825GHz
      • Data Rates
        • 802.11a: 6,9,12,18,24,36,48,54Mbps
        • 802.11b: 1,2,5.5,11Mbps
        • 802.11g: 6,9,12,18,24,36,48,54Mbps
        • 802.11n: MCS0–MCS7 @ HT20/HT40 2.4GHz and 5GHz bands
      • AP, Station, AP/Client supported
    • Bluetooth
      • Bluetooth 5.0 LE
      • Receiver Sensitivity: -92 dBm
      • Transmit Power: 7 dBm
    • Antenna – IPEX connector or PCB Antenna
  • I/O – 16x castellated holes with GPIO, 2x UART (AT commands + serial), ADC, I2C, SPI, 4x PWM, 3.3V, GND
  • Power Supply – 3.3±5% V
  • Dimensions – 24 x 16 x 3 mm
  • Temperature Range – Operating: -20°C to 85°C; storage: -40°C to 125°C
  • Relative Humidity – 10%~90% (non-condensing)
  • Certifications – FCC, CE, SRRC, RoHS

Source: https://www.cnx-software.com/2020/01/17/realtek-rtl8720dn-dual-band-wifi-bluetooth-5-0-iot-module/

Bluetooth 5.0 update for ESP32

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Bluetooth LE 5.0/5.1 comming soon to ESP32-based controller

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Bluetooth 5.0 update for ESP32

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Due to hardware limitations, ESP32 does not support such functions of Bluetooth LE 5.0 as 2M PHY, LE Long Range, and ADV Extensions.

It is also worth mentioning that the combination of Bluetooth and Mesh networking is expected to become a key technology for the Internet of Things. A  Bluetooth® Mesh network enables a „many-to-many” relationship among potentially thousands of wireless devices, where data are transmitted not in a direct radio range but in wide physical areas. Espressif’s contribution in this field is the ESP-BLE-MESH, which got fully certified by Bluetooth SIG in September 2019.

Several Bluetooth-operated products on the market, such as wearable devices, smart speakers, cleaning robots, smart lights/sockets, etc., provide evidence that Bluetooth 5.0 and the Bluetooth Mesh networking technology are mature enough to drive the development of interconnected IoT devices. To this end, Espressif’s chips and ESP-BLE-MESH, in particular, are designed to help customers develop easily secure and cost-effective products for smart homes, smart buildings, healthcare, new automobiles and other smart industries.

Source: https://www.espressif.com/en/news/BLE_5.0_Certification

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32