Silicon Labs recently announced two hardware modules based on its BG22 Secure Bluetooth 5.2 SoC: 6x6mm BGM220S system bundled (SiP) and slightly optimized for wireless performance with a better link budget. BGM220P introduced, large PCB variant, wider range.

Both modules can be integrated into products with a battery life of up to 10 years using a single coin cell battery. All variants of BGM220S/P can support Bluetooth directional discovery, and some components can also support Bluetooth mesh low power protocol.

Main features

  • Silicon Labs EFR32BG22 Arm Cortex-M33 with DSP instructions and floating-point unit, up to 512 kB Flash, 32 kB RAM, 2.4 GHz radio with TX power up to 8 dBm, and Embedded Trace Macrocell (ETM) for advanced debugging
  • Supported Protocols
    • Bluetooth Low Energy (Bluetooth 5.2)
    • Direction-finding
    • Bluetooth mesh Low Power Node

Source: https://www.cnx-software.com/2020/09/14/silicon-labs-bluetooth-5-2-bgm220s-sip-and-bgm220p-pcb-module/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 and Bluetooth technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

ESP-MESH is a network protocol based on the Wi-Fi protocol. ESP-MESH enables the connection of a large number of devices (hereinafter nodes) covering a large physical area (both inside and outside) over a single WLAN (wireless local area network). ESP-MESH self-organizes and self-heals, allowing you to build and maintain networks autonomously.

Traditional Wi-Fi Network Architecture. Source: espressif.com

Traditional Infrastructure of Wi-Fi network is a point-to-multipoint network in which a single central node called an Access Point (AP) is directly connected to all other nodes called stations. The AP is responsible for arbitrating and forwarding transmissions between stations. Some access points relay transmissions to and from external IP networks through routers.

Traditional Infrastructure Wi-Fi networks have the downside of having a limited coverage area as all stations need to be in range to connect directly to the access point. In addition, the maximum number of stations allowed in the network is limited by the bandwidth of the access point, making traditional Wi-Fi networks prone to overload.

ESP-MESH vs traditional Wi-Fi infrastucture

ESP-MESH differs from traditional Wi-Fi infrastructure networks in that the nodes do not have to connect to a central node. Instead, the node can connect with its neighbors. Nodes are responsible for relaying transmissions to each other. This allows for achieving interconnections without the need for nodes to be within the range of the central node, which significantly extends the coverage area of the ESP-MESH network. Likewise, ESP-MESH is less prone to congestion as the number of allowed nodes in the network is no longer limited by a single central node.

ESP-MESH Network Architecture. Source: espressif.com

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Upcoming Wi-Fi 6 802.11ax and Wi-Fi 7 802.11be forecast for industrial IoT

The new Wi-Fi 6 standard, also known as 802.11ax, is the latest stage in the development of this technology. Based on the benefits of the 802.11ac standard, this standard also provides performance, flexibility and scalability, which in new and existing networks means an increase in speed and bandwidth for new generation applications.

Wi-Fi 6 is now coming to telephones, laptops and network equipment. But engineers are already looking at: Wi-Fi 7. With a high speed of 30 gigabits per second, the new generation of Wi-Fi will offer better video streaming, longer distances and reduced problems with data traffic.

What is Wi-Fi 6?

The Wi-Fi 6 standard enables enterprises and service providers to support new and emerging applications within the same wireless LAN (WLAN) infrastructure while ensuring higher standards of support for older applications. This scenario prepares the ground for new business models and increased use of Wi-Fi.

Upcoming Wi-Fi 6 and Wi-Fi 7 forecast for industrial IoT
Source: TP-Link

This is exactly the same standard as 802.11ax. The Wi-Fi Alliance has launched a campaign to give the IEEE 802.11ax standard the name „Wi-Fi 6”. This name suggests that this standard is a 6th generation Wi-Fi network. The justification for this idea was to simplify the marketing message of the 802.11ax standard in order to gain an image advantage over the standards of the Third Generation Partnership Project (3GPP) used in cellular network technology (e.g. 5G).

Wi-Fi 6 – 802.11ax features

The Wi-Fi 6 network will be based on the success of the 802.11 ac standard. This standard will allow access points to support more clients in dense environments and provide higher standards of use for typical wireless LANs. It will also provide more predictable utility properties for the needs of advanced applications, e.g. for 4K or 8K video playback, high density and high resolution collaboration, fully wireless offices and the Internet of Things (IoT). The Wi-Fi 6 standard will allow Wi-Fi networks to face the challenges of the future accompanying the development of wireless networks.

As with any new product in the area of Wi-Fi technology, the Wi-Fi 6 network is backward compatible with older technologies on which it is based and which makes it more efficient.

Source: TP-Link

Expectations about Wi-Fi 7 standard

During a speech during the August Wi-Fi Qualcomm Day and subsequent interviews, V.K. Jones, vice president of technology, shared details about the operation of Wi-Fi 7. He expects a three-step improvement over today’s Wi-Fi 6, called 802.11ax in the world of technology.

The first improvement expected will increase Wi-Fi 6 bandwidth and use new radio waves that will allow the governments of the United States and Europe to start wireless transmission soon next year. Secondly, the Wi-Fi 6 update in 2022 should improve speed, especially for those who transfer data such as videos from phones and computers. The third, and perhaps the most interesting, is the Wi-Fi update collection expected in 2024, known only under the technical name 802.11be.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

Is LoRa a 'must be' for Industrial IoT?

As the remote application market is growing rapidly, technology also needs to progress, ensuring greater range and transmission speed while reducing energy consumption. Technological progress makes it possible to create innovative standards for new, sophisticated applications that facilitate our life and work. One of wireless connection choices can be LoRa technogoly.

What exactly is LoRaWAN?

LoRa (Long Range Radio) technology with low data throughput allows IoT and M2M applications to communicate wirelessly over 15 kilometers, with a battery life of more than 10 years. LoRa allows you to connect millions of wireless nodes with compatible gateways and has several key advantages over other wireless solutions. For example, it uses spectrum spreading modulation with the ability to demodulate a signal 20 dB below the noise level.

LoRa uses license-free sub-gigahertz radio frequency bands like 433 MHz, 868 MHz (Europe) and 915 MHz (Australia and North America). LoRa enables long-range transmissions (more than 10 km in rural areas) with low power consumption.[4] The technology is presented in two parts: LoRa, the physical layer and LoRaWAN (Long Range Wide Area Network), the upper layers.

Source: https://en.wikipedia.org/wiki/LoRa

Compared to 3G and 4G cellular networks, LoRa technology is also better scalable and more cost-effective for embedded applications. It has a much greater range than other popular wireless protocols, which allows devices to operate without amplifiers, reducing the total cost of the application.

Thanks to scalability, reliable communication, mobility and ability to work in difficult external conditions, the LoRa module is perfectly suited for use in a wide range of wireless monitoring and control applications that do not require high transmission speeds. Examples of applications may include smart city (street lighting sensors, motion sensors), energy (intelligent measurement of electricity / water / gas consumption) and industrial / commercial / home applications, among others HVAC, intelligent devices, security systems and lighting.

LoRa Coverage
LoRa coverage. Source: https://lora-alliance.org/

Use of LoRa in industrial automation

Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.

Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as ModBerry industrial device from TECHBASE.

LoRa vs NarrowBand-IoT. What is better for Industrial IoT?

Low-power wide-area (LPWA) technology meets the needs of multiple IoT markets for low-cost devices that maintain long battery life and low-cost, large-area networks that support large numbers of connections. However, LoRa (LoRaWAN) and NarrowBand-IoT have the most momentum and will gain the largest share in the LPWA market in the next few years.

Many technology articles compare LoRa and NB-IoT technologies as if they were battling it out for dominance in the IoT market. In reality, these technologies are two branches within an emerging technology ecosystem. Similar to WiFi and Bluetooth, they will most likely to diverge into different niches, rather than directly compete with each other. This article will dive deeper into the capabilities, costs, longevity, maturity, and other differentiators of NB-IoT and LoRa-based technology.

Source: https://www.linkedin.com/pulse/nb-iot-vs-lora-its-ecosystem-race-art-reed

Sigfox/LoRa and NB-IoT in direct comparison

As a result of the research, performed by Tauron, it was found that SigFox and LoRaWAN technologies have limited applications due to the use of the unlicensed ISM band (868 MHz). In addition, each of the three technologies tested has a limit on the transmission channel speed. LoRaWAN, unlike others, allows the construction of an autonomous, separate network dedicated to the needs of the owner.

LTE NarrowBand-IoT technology, as a 3GPP standard, is being increasingly implemented by subsequent mobile operators in the world and in European countries like Poland. For example, polish main frequencies of NB-IoT implementation are 800 MHz and 900 MHz, which allows achieving high coverage of the country.

Research carried out by Tauron has shown that, considering the security of the solution, the availability of telecommunications infrastructure, or the speed of data transmission (important for meter reading), LTE NB IoT technology is closest to use in the energy sector.

Source: https://www.telko.in/tauron-lepiej-ocenia-nb-iot-niz-lora-i-sigfox

Both LoRa and NB-IoT standards were developed to improve security, power efficiency, and interoperability for IoT devices. Each features bidirectional communication (meaning the network can send data to the IoT device, and the IoT device can send data back), and both are designed to scale well, from a few devices to millions of devices.

Source: https://www.linkedin.com/pulse/nb-iot-vs-lora-its-ecosystem-race-art-reed

Use of LoRa/NB-IoT in industrial automation

Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa / NarrowBand-IoT wireless solutions. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened.

ModBerry 500 / ModBerry 9500

Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as ModBerry industrial device from TECHBASE. Such solutions offer also NarrowBand-IoT and full 4G/LTE support.

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. The M-Bus wireless bus has been developed as a standard to meet the needs of the European network of media meters and remote reading systems and forms the basis of a new advanced measurement infrastructure (AMI). The frequency of M-Bus and sub-GHz wireless connections has been used for several years, but is still evolving to adapt to changing environments and take advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Intelligent network devices require robust long-range wireless communication. The most common frequencies are around 868 MHz, 434 MHz and 169 MHz, which are unlicensed bands in Europe and offer better radio wave propagation compared to 2.4 GHz. By using one of these unlicensed bands, radio waves can reach difficult areas such as underground meters or the location of buildings with many walls or obstacles. Another advantage of operating in the unlicensed band is that utilities have lower solution costs.

COVID-19 and wireless technologies

In times of COVID-19 pandemic hazards, the use of wireless technologies is often a must, to prevent further spread of the coronavirus. One of obvious choices for Internet of Things and home monitorng is Wireless M-Bus implementation.

TECHBASE has added high performance module for Wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

In the toughest annual race of this kind, Tor des Géants participants run over 300 kilometers and overcome altitude changes at 24 kilometers in less than 150 hours. The Everynet solution based on LoRa monitored runner locations during the event for the fourth year in a row to ensure the safety and health of participants. Each runner is equipped with a LoRa based sensor that sends geolocation data in real time to the Everynet gateway, which is implemented during the race.

The race organizer chose the LoRa Everynet app because the race location in the Italian mountain range is obviously not covered by the mobile network. In addition, the long range capability and low power consumption of the LoRa device ensure consistent and reliable runner position data during the week of the race. Most devices consume less than 30% of the total battery capacity as a result of an incident. After the introduction of the Every des application on Tor des Géants, race employees could often intervene directly to ensure the safety of the runner.

With LoRaWAN-based connectivity, Everynet was able to simply and efficiently provide coverage to the entirety of Tor des Géants, including difficult terrain, without requiring additional network infrastructure,” said Antonio Terlizzi, Sr. Vice President of Global Sales for Everynet. “Combining the strong network coverage of LoRaWAN with reliable tracking sensors provides race organizers with the accurate, consistent and real-time data necessary to keep runners safe and help ensure a successful event

LoRa Coverage
LoRa coverage. Source: https://lora-alliance.org/

Use of LoRa in industrial automation

Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.

ModBerry M500 with Raspberry Pi’s 4 on-board

Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as ModBerry industrial device from TECHBASE.

A few years ago, Qualcomm launched the Snapdragon 212 processor for smart speakers. This post has nothing to do with this, but strangely enough, the company has decided to reuse the 212 number in its new Qualcomm 212 LTE IoT modem, „World’s most power-efficient single-mode 3GPP Release 14 NB2 (NB-IoT) modem„, as read.

Qualcomm 212 LTE IoT modem requires less than 1 microamp (1uA) sleep current and has a very low cutoff at system level (on the order of 2.2V) with the ability to adjust energy consumption for various source power levels It is said to support voltage.

Qualcomm 212 LTE IoT Modem specifications:

  • MCU Core – Arm Cortex M3 @ up to 204 MHz
  • Cellular Connectivity
    • 3GPP Rel.14 LTE capabilities: Cat-NB2 with multi-carrier NPRACH and Paging, Cat-NB2 Release Assistance Indication (RAI), Cat-NB2 with larger TBS and 2 HARQ processes
    • Peak Speeds – DL: 127 kbps; UL: 158.5 kbps
    • Frequency Bands (700Mhz to 2.1 GHz for global roaming)
      • LTE low bands: B5, B68, B8, B12, B13, B14, B17, B18, B19, B20, B26, B28, B71, B85
      • LTE mid bands: B1, B65, B70, B2, B25, B66, B3, B4
    • Global Emergency Services Support – ECID, OTDOA (LTE-based positioning)
  • Network Protocols – IPv4/IPv6 stack with TCP and UDP, TLS, HTTPS, PPP, SSL, DTSL, FTP, ping, HTTTP, MQTT, OMA Lightweight M2M, CoAP
  • I/O Interfaces – 2x I2C, 2x SPI, 3x UART, up to 26 GPIOs, 4-channel ADC
  • Security – Hardware-based Crypto Engine, Secure Key provisioning, Secure Boot
  • Integrated Chipsets
    • Qualcomm 9205 baseband IC
    • SMB231 charger IC
    • PME9205 power management IC
    • SDR105 radio transceiver and front-end IC
    • WCD9306 audio codec IC
  • Supply Voltage – 2.2V to 4.5V
  • Temperature Range – -40 to 85°C
  • Package – < 10x10mm

Source: https://www.qualcomm.com/products/qualcomm-212-lte-modem

Industrial use of LTE modems

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. ModBerry supports wide range of industrial grade extension cards, i.e. wireless modems with 3G/LTE, NarrowBand-IoT, LoRa, Wireless M-Bus, ZigBee, WiFi, Bluetooth and many more.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.