Wpisy

With latest Raspberry Pi Compute Module 4, the Raspberry Foundation added NVMe SSD support via M.2 (PCIe 2.0) interface. Jeff Geerling tested 3 piece M.2 SSD RAID array which is another example how Compute Module 4 is a milestone in IoT applications.

SSD/eMMC benchmark scores for Compute Module 4

With the debut of Raspberry Pi Compute Module 4 and ModBerry 500 CM4 from TECHBASE, another addition came to Industrial Controllers and Edge Automation. New module carried the likelihood to associate NVMe SSD module by means of M.2 slot utilizing PCIe 2.0 interface.

We took our ModBerry 500 CM4 device, utililizing latest Raspberry Pi Compute Module 4 and carried two test:

  • eMMC built-in standard Raspberry Pi Compute Module 4
  • selected NVMe SSD via M.2 slot

Both eMMC and SSD drive perfomed truly well, accomplishing extremely high benchmark score: 5078 for eMMC and unbelivable 13807 for NVM. SSD. For direct correlation, you can check a few tests performed by over 20.000 clients of this benchmark here: https://jamesachambers.com/2020s-fastest-raspberry-pi-4-storage-sd-ssd-benchmarks/?amp

Score of eMMC on ModBerry 500 CM4
Score of NVMe SSD on ModBerry 500 CM4

More benchmark scores can be found here: https://storage.jamesachambers.com/

Order next batch of Raspberry Pi Compute Module 4 devices

TECHBASE’s ModBerry 500 series has gotten an update to Compute Module 4 and is accessible for pre-orders. TECHBASE is leading producer of Industrial Raspberry Pi and Industrial Compute Module applications. ModBerry 500 series is completely viable with all arrivals of Compute Module from Rasbperry Pi Foundation.

Primary highlights of refreshed device are:

  • up to 4x quicker eMMC Flash with up to 32GB capacity
  • up to 2x quicker execution than recent CM3 rendition with quad-center Cortex-A72 4×1.5GHz
  • up to 8x more RAM (8GB LPDDR4)
  • 1Gbit Ethernet interface
  • discretionary PCIe card support for NVMe SSD by M.2
  • discretionary second PCIe support for remote modem arrangements, for example 5G modems

First group of ModBerry 500 CM4 devices has just been dispatched, we are gathering orders for next batch. Hustle just a bit to get your devices rapidly!

With the debut of Raspberry Pi Compute Module 4 and ModBerry 500 CM4 from TECHBASE, another addition came to Industrial Controllers and Edge Automation. New module carried the likelihood to associate NVMe SSD module by means of M.2 slot utilizing PCIe 2.0 interface.

SSD/eMMC benchmark scores for Compute Module 4

We took our ModBerry 500 CM4 device, utililizing latest Raspberry Pi Compute Module 4 and carried two test:

  • eMMC built-in standard Raspberry Pi Compute Module 4
  • selected NVMe SSD via M.2 slot

Both eMMC and SSD drive perfomed truly well, accomplishing extremely high benchmark score: 5078 for eMMC and unbelivable 13807 for NVM. SSD. For direct correlation, you can check a few tests performed by over 20.000 clients of this benchmark here: https://jamesachambers.com/2020s-fastest-raspberry-pi-4-storage-sd-ssd-benchmarks/?amp

Score of eMMC on ModBerry 500 CM4
Score of NVMe SSD on ModBerry 500 CM4

More benchmark scores can be found here: https://storage.jamesachambers.com/

Order next batch of Raspberry Pi Compute Module 4 devices

TECHBASE’s ModBerry 500 series has gotten an update to Compute Module 4 and is accessible for pre-orders. TECHBASE is leading producer of Industrial Raspberry Pi and Industrial Compute Module applications. ModBerry 500 series is completely viable with all arrivals of Compute Module from Rasbperry Pi Foundation.

Primary highlights of refreshed device are:

  • up to 4x quicker eMMC Flash with up to 32GB capacity
  • up to 2x quicker execution than recent CM3 rendition with quad-center Cortex-A72 4×1.5GHz
  • up to 8x more RAM (8GB LPDDR4)
  • 1Gbit Ethernet interface
  • discretionary PCIe card support for NVMe SSD by M.2
  • discretionary second PCIe support for remote modem arrangements, for example 5G modems

First group of ModBerry 500 CM4 devices has just been dispatched, we are gathering orders for next batch. Hustle just a bit to get your devices rapidly!

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

A day ago, Raspberry Foundation announced new member of its family, a Rasbperry Pi Compute Module 4. It’s quite obvious, even from the first look, that the new module is very different from its predecessors. Main difference is a new form factor, leaving DDR2 SODIMM in the past.

The same 64-bit quad-core BCM2711 application processor as in Raspberry Pi 4B, the Compute Module 4 brings higher performance: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless Wi-Fi and Bluetooth connectivity options.

Compute Module 4 comes in 32 variants. Lite, as always, offers no eMMC memory, a and standard versions come with up to 8GB RAM, 32 eMMC Flash and wireless modem.

New Raspberry Pi Compute Module 4 in new form factor

New features of Compute Module 4

  • 1.5GHz quad-core 64-bit ARM Cortex-A72 CPU as in Raspberry Pi 4 version B
  • 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM
  • 8GB, 16GB or 32GB eMMC Flash storage for Standard version, Lite version without eMMC
  • Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0
  • Single-lane PCI Express 2.0 interface
  • Gigabit Ethernet PHY with IEEE 1588 support
  • Dual HDMI interfaces, at resolutions up to 4K
  • 28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI

Source: https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

Compute Module 4 cutting edge in Industrial IoT

Few months ago IoT Industrial Devices predicted a possible release date for Compute Module 4 in Standard and Lite version:

Upcoming Raspberry Pi Compute Module 4 possible release date
Raspberry Pi release timeline with probable Compute Module 4 release date

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is mid-2020.

Raspberry Pi Compute Module 4 high-density connector

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Official Raspberry Pi’s information about upcoming Compute Module 4

In recent interview with Eben Upton, the CEO of Raspberry Pi Trading, we finally had Raspberry Pi Compute Module 4 release confirmation, probably in 2021. He shared some details about the upcoming CM4 features, such as single-lane NVMe support.

The Raspberry Pi Compute Module, CM4, we will support NVMe to some degree on that,  because of course, it [Raspberry Pi 4] has a PCI Express channel. (…) We have a single lane Gen 2 which is used to supply USB 3.0 on the Raspberry Pi [4]. On the [Compute] Module that would be exposed to the edge connector and we’re likely to support NVMe over that.

Eben Upton, CEO of Raspberry Pi Trading

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and PCIe/NVMe support, CM4 might be a black horse of industrial automation in 2021.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Raspberry Pi Compute Module 4 probable specification

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • PCIe/NVMe support via single lane
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions with PCIe/NVMe single lane. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. Upcoming Raspberry Pi’s Compute Module 4 will be fully compatible with TECHBASE’s ModBerry 500/9500 controllers, oferring extended features.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Update on Raspberry Pi’s Compute Module 4 features [15.10.2020]

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Official Raspberry Pi’s information about upcoming Compute Module 4

In recent interview with Eben Upton, the CEO of Raspberry Pi Trading, we finally had Raspberry Pi Compute Module 4 release confirmation, probably in 2021. He shared some details about the upcoming CM4 features, such as single-lane NVMe support.

The Raspberry Pi Compute Module, CM4, we will support NVMe to some degree on that,  because of course, it [Raspberry Pi 4] has a PCI Express channel. (…) We have a single lane Gen 2 which is used to supply USB 3.0 on the Raspberry Pi [4]. On the [Compute] Module that would be exposed to the edge connector and we’re likely to support NVMe over that.

Eben Upton, CEO of Raspberry Pi Trading

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is somewhere inbetween 2020/2021.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and PCIe/NVMe support, CM4 might be a black horse of industrial automation in 2021.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Raspberry Pi Compute Module 4 probable specification

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • PCIe/NVMe support via single lane
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions with PCIe/NVMe single lane. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. Upcoming Raspberry Pi’s Compute Module 4 will be fully compatible with TECHBASE’s ModBerry 500/9500 controllers, oferring extended features.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Power Management HAT with RTC for Raspberry Pi

If you’re looking for a useful tool for long-lasting Raspberry Pi, such as longer battery life or automatic power on / off, this HAT power management is the perfect choice.

This HAT can significantly increase battery life by automatically starting the device for a certain time and automatically switching it off at another time. It can be configured to monitor the Raspberry Pi voltage / current status in real time and turn off the Pi according to the operating status. In addition, the kit includes a convenient power switch for easy on / off (soft shutdown of Pi by software), preventing data loss due to power disconnection.

Raspberry Pi Power Management HAT specification

  • MCU – Microchip ATmega328P-AU MCU
  • Storage – CAT24C32 EEPROM
  • USB – 1x micro USB port for serial communication via CP2102 UART to TTL chip
  • RPi Interface – 40-pin Raspberry Pi GPIO header
  • Misc
    • NXP PCF8523 RTC & calendar chip + CR1220 battery holder
    • DEBUG switch (9) to either:
      1. Power directly Raspberry Pi board
      2. Let the “Arduino” MCU manage the power supply
    • UART selection (15)
      • A – Access Arduino via USB to UART
      • B – Control the Raspberry Pi by Arduino
      • C – Access Raspberry Pi via USB to UART
    • Power/User and Reset buttons
    • Status and Power LEDs
  • Power Supply
    • PH2.0 connector for 7~28V regulated power supply or lithium battery
    • Monolithic Power MP1584 switching regulator
    • Protection circuits such as reverse-polarity, overcurrent, etc…
    • Voltage/current monitoring circuits
  • Dimensions – 65 x 56.5 mm (Raspberry Pi HAT)

Source: https://www.cnx-software.com/2019/12/18/raspberry-pi-power-management-hat-adds-rtc-battery-management-software-on-off/

Industrial use of Raspberry Pi Compute Module 3+

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. One of the options is SuperCap power support.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Raspberry Pi in the service of COVID-19 monitoring

Raspberry Pi devices are often used by scientists, especially for capturing and analyzing biological data. A particularly noteworthy sober project has published news this week.

According to the researchers at UMass Amherst, FluSense is about the size of a dictionary. Includes an inexpensive microphone set, heat sensor, Raspberry Pi and Intel Movidius 2 neural engine. The idea is to use AI on the edge to classify audio samples and determine the number of people in a room at any given time.

Image courtesy of the University of Massachusetts Amherst

We believe that FluSense has the potential to expand the arsenal of health surveillance tools used to forecast seasonal flu and other viral respiratory outbreaks, such as the COVID-19 pandemic or SARS,” Rahman told TechCrunch. “By understanding the ebb and flow of the symptoms dynamics across different locations, we can have a better understanding of the severity of a novel infectious disease and that way we can enforce targeted public health intervention such as social distancing or vaccination.

Source: https://www.networkworld.com/article/3534101/covid-19-vs-raspberry-pi-researchers-bring-iot-technology-to-disease-detection.html

Crowd monitoring with Raspberry Pi

The device distinguishes cough from other sounds. By combining cough data with information about the size of the crowd at your location, you can get an index that predicts the number of people who may be experiencing flu symptoms.

Currently we are planning to deploy the FluSense system in several large public spaces (e.g., large cafeteria, classroom, dormitories, gymnasium, auditorium) to capture syndromic signals from a broad range of people who live in a certain town or city,” they said. “We are also looking for funding to run a large-scale multi-city trial. In the meantime, we are also diversifying our sensing capability by extending FluSense’s capability to capture more syndromic signals (e.g., recently we added sneeze sensing capability to FluSense). We definitely see a significant level of commercialization potential in this line of research.

https://www.raspberrypi.org/blog/flusense-takes-on-covid-19-with-raspberry-pi/
Upcoming Raspberry Pi Compute Module 4 possible release date

UPDATE 22.10.20: ModBerry 500, first industrial computer based on Compute Module 4, available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Update on Raspberry Pi’s Compute Module 4 features [15.10.2020]

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Compute Module 4 a new milestione in Industrial IoT

A new milestone of Industrial IoT might come to life in this year. The successor of Raspberry Pi Compute Module 3+, working named Compute Module 4, will certainly draw from Raspberry Pi 4 B features, such as new Cortex-A72 processor (Broadcom BCM2711) and multiple RAM/eMMC options. Rumours say, that we may also see Gigabit Ethernet and USB3.0/3.1 support, since it was a main drawback in previous models.

Upcoming Raspberry Pi Compute Module 4 possible release date
Raspberry Pi release timeline with probable Compute Module 4 release date

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is mid-2020.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 4 specification forecast

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode) might replace outdated H.264 (1080p30)
  • and OpenGL ES 3.0 graphics will replace 1.1, 2.0 versions,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

A Lite 4 version of Compute Module is to be expected too, without eMMC and probably limited SDRAM options.

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

How Raspberry Pi Compute Module 4 might help IoT & Industrial Automation?

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Update on Raspberry Pi’s Compute Module 4 features [15.10.2020]

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Compute Module & Industrial IoT symbiosis

It a matter of time before we will see Raspberry Pi Compute Module 3+ successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board? What changes will it bring to Industrial use of IoT?

We are witnessing the fourth industrial revolution. Its key element is to create systems of interconnected sensors and actuators that operate within one global network. The so-called Internet of Things, unlike the consumer market, meet much more difficult requirements. To be able to meet harsh industrial expectations, many automation companies have already begun to offer solutions especially tailored to the application of the Internet of Things in Industry 4.0.

Although it may seem quite obvious nowadays, it is worth to be aware that just a few years ago such algorithms were practically not implemented at all in small consumer devices. It was only when people got used to smartphones that the idea of ubiquitous communication and adaptation of the way the system or device works to the environment became understandable. In fact, this confirms the validity of the idea of the Internet of Things as an important direction in the development of electronics – and in practice also automation.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 4 specification forecast

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode) might replace outdated H.264 (1080p30)
  • and OpenGL ES 3.0 graphics will replace 1.1, 2.0 versions,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

A Lite 4 version of Compute Module is to be expected too, without eMMC and probably limited SDRAM options.

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Raspberry Pi Compute Module 3+

With new Compute Module 3+ options from Raspberry Pi, we upgraded our ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

Raspberry Pi Compute Module 3+

New Rasperry Pi’s Compute Module 3+ specs:
Processor: Broadcom BCM2837 64-bit
Core: Quad-Core ARM Cortex A53
Clock: 1.2 GHz
RAM memory: 1 GB LPDDR2
eMMC Flash memory: 8/16/32 GB (CM3 has 4GB RAM only)

RASPBERRY PI COMPATIBLE

Over 10 million Raspberry Pi’s have been sold and the Raspberry Pi is likely to stay as a new standard in the industry. Official Raspbian OS is free operating system based on Linux Debian optimized for the Raspberry Pi comes with over 35,000 packages, pre-compiled software bundled in a nice format for easy installation.

WINDOWS 10 IOT SUPPORT

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

ModBerry 500/9500 devices are still available with previous Compute Module 3 (4GB RAM) and new CM3+ with 8/16/32GB RAM are available on demand. For delivery time, ask our Sales Department via Live Chat, since the small quantities of new modules are available seasonally.