Wpisy

In March, sales of Raspberry Pi single-board computers totaled 640,000. The consumer find it the cheapest way to start tinkering and drove to the second-largest sales month since Raspberry Foundation began selling for home use.

Other uses of Raspberry Pi computers are more directly associated with the appearance of COVID-19. For example, in Colombia, efforts are underway to run a ventilator on a Pi computer, and if successful, it will help solve the problem of the lack of traditional ventilation equipment in this country.

I think what this is telling us is that we’re seeing genuine consumer use of the product. It’s not like your desktop PC – you’re not going to be able play Crysis on it – but if you want a machine you can use to edit documents, use the web, use Gmail and Office 365 and all the baseline use cases of a general purpose computer, the Raspberry Pi 4 is a product we’ve made to get over that bar.

Eben Upton, the Raspberry Pi’s co-creator for Techrepublic

When the Raspberry Pi Foundation asked to talk about how to deal with COVID-19 using Raspberry Pi devices, one of the most common uses he saw was 3D printing with use of Raspberry Pi, especially for 3d-printed faceshields.

Raspberry Pi 4
Raspberry Pi 4

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

The Colombian medical team tests a fan made with the Raspberry Pi and easily available parts. Robotics engineer Marco Mascolo said he made the project because he knew that machines were in great demand to handle Covid-19. The design and code was published online in March by a Californian, stating that he had ‚no previous experience creating medical devices’.

The ventilator control computer is the most important part. Raspberry Pi can set the air pressure, open and close the valves to adjust if the patient needs full or partial breath support, and Mascorro has integrated the code with open software so that anyone can use or change it for free.

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

Raspberry Pi in the service of COVID-19 monitoring

Raspberry Pi devices are often used by scientists, especially for capturing and analyzing biological data. A particularly noteworthy sober project has published news this week.

According to the researchers at UMass Amherst, FluSense is about the size of a dictionary. Includes an inexpensive microphone set, heat sensor, Raspberry Pi and Intel Movidius 2 neural engine. The idea is to use AI on the edge to classify audio samples and determine the number of people in a room at any given time.

Image courtesy of the University of Massachusetts Amherst

We believe that FluSense has the potential to expand the arsenal of health surveillance tools used to forecast seasonal flu and other viral respiratory outbreaks, such as the COVID-19 pandemic or SARS,” Rahman told TechCrunch. “By understanding the ebb and flow of the symptoms dynamics across different locations, we can have a better understanding of the severity of a novel infectious disease and that way we can enforce targeted public health intervention such as social distancing or vaccination.

Source: https://www.networkworld.com/article/3534101/covid-19-vs-raspberry-pi-researchers-bring-iot-technology-to-disease-detection.html

Crowd monitoring with Raspberry Pi

The device distinguishes cough from other sounds. By combining cough data with information about the size of the crowd at your location, you can get an index that predicts the number of people who may be experiencing flu symptoms.

Currently we are planning to deploy the FluSense system in several large public spaces (e.g., large cafeteria, classroom, dormitories, gymnasium, auditorium) to capture syndromic signals from a broad range of people who live in a certain town or city,” they said. “We are also looking for funding to run a large-scale multi-city trial. In the meantime, we are also diversifying our sensing capability by extending FluSense’s capability to capture more syndromic signals (e.g., recently we added sneeze sensing capability to FluSense). We definitely see a significant level of commercialization potential in this line of research.

https://www.raspberrypi.org/blog/flusense-takes-on-covid-19-with-raspberry-pi/
Arduino-based ventilator to help coronavirus patients

In the times we live in, often a desperate measures must be taken. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one.

Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.