Wpisy

NarrowBand-IoT the new black of Industrial IoT

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

IoT Security with latest SLM 9670 Industrial Grade TPM 2.0

Like other embedded systems, Industrial IoT design faces a constant stream of threats. As hackers adopt new attacks, developers rush to close security holes. Deployed devices need to update IoT firmware, increasing potential security vulnerabilities. For example, using a simple firmware verification check can leave the software published. In this situation, the developer may expect to be able to query external resources for verification and catch attempts to replace the firmware with hacked code. However, even relatively novice hackers can replace the firmware with code that ignores such verification checks. To secure these vurnerabilities comes Industrial Grade TPM 2.0.

Securing devices with Infineon industrial grade TPM

Infineon Technologies AG has unveiled a new security chip that defines the first TPM (Trusted Platform Module), designed specifically for industrial applications such as industrial computers, servers, industrial controllers and edge gates. The module protects confidential data in connected devices and reduces the risk of leakage of this information due to attacks, e.g. hackers.

The OPTIGA TPM SLM 9670 module protects the integrity of industrial systems and the identity of users using them. The system controls access to sensitive data at key locations in industrial environments, such as an automated factory. It also protects the cloud interface if the network uses one. The security system fully meets the TPM 2.0 standard developed by the Trusted Computing Group and is certified by an independent test laboratory in accordance with the criteria contained in this standard. The new module is meticulously controlled and certified by Infineon. Thanks to its use, it is possible to shorten the time of designing and introducing the device to the market, thanks to the ready security solution in the system.

The TPM system has a lifetime declared as 20 years. It allows programmers to perform firmware updates, which in turn enables them to meet the long-term security requirements in rapidly changing industrial environments. In this way, it can also reduce maintenance costs of industrial equipment thanks to secured remote software updates. The TPM chip will be available in serial production in the second half of 2019.

TPM 2.0 Key Features

  • Random Number Generator (RNG) according to NIST SP800-90A
  • TPM FW update functionality installed
  • 6962 Bytes of free NV memory
  • Full personalization with Endorsement Key (EK) and EK certificate
  • Up to 3 keys in the volatile memory
  • Up to 7 keys in the NV memory
  • Up to 8 NV counters
  • Support of various cryptographic algorithms:
    • RSA-1024 and RSA-2048
    • SHA-1 and SHA-256
    • ECC NIST P256
    • ECC BN256

Security chip implementation in Industrial IoT devices

With knowledge of latest Industrial IoT security measures, the choice of proper end-point conroller or gateway is much easier than you think. Some manufacturers can implement TPM 2.0 security chip in production process, to allow users to generate certification keys after purchase, maximizing security of their installations. TECHBASE offers wide range of solutions, optionally aided with TPM system.

For example, ESP-32 based solution, Moduino X series and eModGATE series products offer the support for such security measures. Read more in Industrial IoT Ecosystem brochure, to understand the importance of reliable and secure hardware for Industrial IoT.

ESP32-based LoRa / LoRaWAN wireless network

One way of long-range and low-power data transmission is LoRa wireless technology. Since the Internet of Things market (with ESP32 – based solutions) is mainly covered with short-range Wi-Fi and Bluetooth and long-range with 3G / NarrowBand-IoT technologies, LoRa oftens is omitted or simply unknown by IoT users. Below you will find a short representation of what LoRa is and how can it be used.

What is LoRa / LoRAWAN network?

LoRaWAN® network architecture is deployed in a star-of-stars topology in which gateways relay messages between end-devices and a central network server. The gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the Long Range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and there is support for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.

Source: https://lora-alliance.org/about-lorawan

Industrial use of LoRa & ESP32-based solutions

One of industrial IoT devices, supporting LoRa wireless technology is ESP32 based eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Sigfox announces changes improving IoT applications

First major announcement is that Sigfox will launch a private network (PAN) that will allow IoT customers to choose private and global services according to their needs. The service was launched for the first time in France in the first quarter of 2020, but Sigfox will be implemented in over 65 countries.

The operator’s wide area network (WAN) will be completed next year in cooperation with Eutelsat. Sigfox provides coverage worldwide using the nano-satellite constellation launched by Eutelsat.

The Sigfox PAN offer will benefit from the existing Sigfox WAN ecosystem. Thanks to the potential to use all components on the market and the use of very low transmit power to support facilities without the need for batteries, the Sigfox PAN offer offers enormous potential,

Ludovic Le Moan, CEO and co-founder of Sigfox.

According to Sigfox, by the end of 2019, there will be more than 15 million registered facilities and over 1,500 customers using this solution in various industries around the world. Sigfox says that PAN customers can expect the same as WAN customers in terms of support and quality. PAN clients can choose to subscribe to additional „WAN Extension” services if needed if the device needs to communicate outside the local network.

Sigfox improving the accuracy of Atlas geolocation services

Internet of Things operators have now launched Atlas Native Complimentary. It is made available free of charge in exchange for the rights to process data regarding GPS data. These data are compared to the fingerprint of the Sigfox network using machine learning, which increases accuracy to 800 meters.

To further increase the accuracy of its geolocation services, Sigfox said it has completed the global implementation of Atlas WiFi in collaboration with HERE Technologies’ mapping experts.

Sigfox uses the global WiFi access point database here. Access points are checked by the Sigfox WiFi tracking module and more closely track the location of external and internal resources with less battery consumption than using GPS.

We are delighted to strengthen our partnership with Amadeus and share our combined expertise to create real digital transformation of the travel sector. Our strategic alliance named PinPoint will not only help to improve the travel experience, but this will also change completely the game for an industry looking for decades for THE technology able to save costs while improving efficiency and quality of services

Raouti Chehih, Chief Adoption Officer at Sigfox
eModGATE with ESP32

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Sigfox wireless technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE with ESP32

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

ESP-MESH is a network protocol based on the Wi-Fi protocol. ESP-MESH enables the connection of a large number of devices (hereinafter nodes) covering a large physical area (both inside and outside) over a single WLAN (wireless local area network). ESP-MESH self-organizes and self-heals, allowing you to build and maintain networks autonomously.

Traditional Wi-Fi Network Architecture. Source: espressif.com

Traditional Infrastructure of Wi-Fi network is a point-to-multipoint network in which a single central node called an Access Point (AP) is directly connected to all other nodes called stations. The AP is responsible for arbitrating and forwarding transmissions between stations. Some access points relay transmissions to and from external IP networks through routers.

Traditional Infrastructure Wi-Fi networks have the downside of having a limited coverage area as all stations need to be in range to connect directly to the access point. In addition, the maximum number of stations allowed in the network is limited by the bandwidth of the access point, making traditional Wi-Fi networks prone to overload.

ESP-MESH vs traditional Wi-Fi infrastucture

ESP-MESH differs from traditional Wi-Fi infrastructure networks in that the nodes do not have to connect to a central node. Instead, the node can connect with its neighbors. Nodes are responsible for relaying transmissions to each other. This allows for achieving interconnections without the need for nodes to be within the range of the central node, which significantly extends the coverage area of the ESP-MESH network. Likewise, ESP-MESH is less prone to congestion as the number of allowed nodes in the network is no longer limited by a single central node.

ESP-MESH Network Architecture. Source: espressif.com

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Hyperautomation is a process in which businesses automate as numerous commerce and IT forms as conceivable utilizing apparatuses like AI, machine learning, event-driven computer program, mechanical process automation, and other sorts of choice prepare and task automation instruments.

It is the key to both computerized operational greatness and operational resiliency for organizations. To empower this, organizations had to digitize their documents/artifacts and guarantee their trade and IT process workflows were advanced. They got to mechanize tasks, processes and coordinate computerization over utilitarian zones.

Hyperautomation is irreversible and inevitable. Everything that can and should be automated will be automated.

Brian Burke, Research Vice President, Gartner

Gartner prepared a Tech Trends 2021 summary with key features of the constantly changing market. Read more at: https://www.gartner.com/en/information-technology/trends/top-strategic-technology-trends-iot-gb-pd

Industrial IoT market evolution

Data generated over the Internet of Things is growing exponentially faster than the traditional cloud environment where data is stored, so just the amount of data can justify the acceleration. In addition, in the cloud as the destination, problems related to data transfer (delay and bandwidth) occur, so travel speed is the main issue. This edge is necessary as a solution to the inefficiency of IIoT to Cloud architecture.

Fast data processing of Industrial IoT devices

When industrial IoT devices and edge processing work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, such as a smart meter, a parking meter or a connected trash can in a street apartment. The installation of sensors with internet access in metropolitan garbage containers is becoming increasingly common for smart urban engineers. You can then remotely monitor the container using the sensor. When it is full, the city sanitation service receives a notification and can register an order and empty the container.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry AI GATEWAY with Raspberry Pi CM4 and Google Coral

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Silicon Labs recently announced two hardware modules based on its BG22 Secure Bluetooth 5.2 SoC: 6x6mm BGM220S system bundled (SiP) and slightly optimized for wireless performance with a better link budget. BGM220P introduced, large PCB variant, wider range.

Both modules can be integrated into products with a battery life of up to 10 years using a single coin cell battery. All variants of BGM220S/P can support Bluetooth directional discovery, and some components can also support Bluetooth mesh low power protocol.

Main features

  • Silicon Labs EFR32BG22 Arm Cortex-M33 with DSP instructions and floating-point unit, up to 512 kB Flash, 32 kB RAM, 2.4 GHz radio with TX power up to 8 dBm, and Embedded Trace Macrocell (ETM) for advanced debugging
  • Supported Protocols
    • Bluetooth Low Energy (Bluetooth 5.2)
    • Direction-finding
    • Bluetooth mesh Low Power Node

Source: https://www.cnx-software.com/2020/09/14/silicon-labs-bluetooth-5-2-bgm220s-sip-and-bgm220p-pcb-module/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 and Bluetooth technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Advantages of Industrial IoT in modern manufacturing and smart environments

Industrial Internet of Things (Industrial IoT or just IIoT for short) uses Internet of Things technology to improve production and industrial processes. These processes increasingly require connected devices to perform their tasks effectively.

Data generated over the Internet of Things is growing exponentially faster than the traditional cloud environment where data is stored, so just the amount of data can justify the acceleration. In addition, in the cloud as the destination, problems related to data transfer (delay and bandwidth) occur, so travel speed is the main issue. This edge is necessary as a solution to the inefficiency of IIoT to Cloud architecture.

IIoT market predictions

Industrial IoT devices and edge computing have grown at impressive rates. Accenture predicts the IIoT market will reach $500 billion by 2020; and IIoT already generates 400 zetabytes a year. Gartner estimates that IoT currently generates about 10% of enterprise data; by 2022, Gartner has predicted this will increase to 50%.

According to IDC, IT’s annual investment on edge infrastructure will hit 18% of total IoT spending; and per last year’s Forrester Analytics Global Business Technographics Mobility Survey, 27% of global telecom decision-makers say their companies will either implement or expand edge computing this year.

Source: https://www.cisco.com/c/en/us/solutions/internet-of-things/industrial-iot-devices.html

Perimeter (edge) computing architectures bring computing processing closer to the users and devices that need it, rather than centrally processing it in a local data center or public cloud. This edge is important for industrial and production processes that use large amounts of data that require fast response times and tight security.

Fast data processing of Industrial IoT devices

When industrial IoT devices and edge processing work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, such as a smart meter, a parking meter or a connected trash can in a street apartment. The installation of sensors with internet access in metropolitan garbage containers is becoming increasingly common for smart urban engineers. You can then remotely monitor the container using the sensor. When it is full, the city sanitation service receives a notification and can register an order and empty the container.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps