Posts

Silicon Labs recently announced two hardware modules based on its BG22 Secure Bluetooth 5.2 SoC: 6x6mm BGM220S system bundled (SiP) and slightly optimized for wireless performance with a better link budget. BGM220P introduced, large PCB variant, wider range.

Both modules can be integrated into products with a battery life of up to 10 years using a single coin cell battery. All variants of BGM220S/P can support Bluetooth directional discovery, and some components can also support Bluetooth mesh low power protocol.

Main features

  • Silicon Labs EFR32BG22 Arm Cortex-M33 with DSP instructions and floating-point unit, up to 512 kB Flash, 32 kB RAM, 2.4 GHz radio with TX power up to 8 dBm, and Embedded Trace Macrocell (ETM) for advanced debugging
  • Supported Protocols
    • Bluetooth Low Energy (Bluetooth 5.2)
    • Direction-finding
    • Bluetooth mesh Low Power Node

Source: https://www.cnx-software.com/2020/09/14/silicon-labs-bluetooth-5-2-bgm220s-sip-and-bgm220p-pcb-module/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 and Bluetooth technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

ESP-MESH is a network protocol based on the Wi-Fi protocol. ESP-MESH enables the connection of a large number of devices (hereinafter nodes) covering a large physical area (both inside and outside) over a single WLAN (wireless local area network). ESP-MESH self-organizes and self-heals, allowing you to build and maintain networks autonomously.

Traditional Wi-Fi Network Architecture. Source: espressif.com

Traditional Infrastructure of Wi-Fi network is a point-to-multipoint network in which a single central node called an Access Point (AP) is directly connected to all other nodes called stations. The AP is responsible for arbitrating and forwarding transmissions between stations. Some access points relay transmissions to and from external IP networks through routers.

Traditional Infrastructure Wi-Fi networks have the downside of having a limited coverage area as all stations need to be in range to connect directly to the access point. In addition, the maximum number of stations allowed in the network is limited by the bandwidth of the access point, making traditional Wi-Fi networks prone to overload.

ESP-MESH vs traditional Wi-Fi infrastucture

ESP-MESH differs from traditional Wi-Fi infrastructure networks in that the nodes do not have to connect to a central node. Instead, the node can connect with its neighbors. Nodes are responsible for relaying transmissions to each other. This allows for achieving interconnections without the need for nodes to be within the range of the central node, which significantly extends the coverage area of the ESP-MESH network. Likewise, ESP-MESH is less prone to congestion as the number of allowed nodes in the network is no longer limited by a single central node.

ESP-MESH Network Architecture. Source: espressif.com

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Advantages of Industrial IoT in modern manufacturing and smart environments

Industrial Internet of Things (Industrial IoT or just IIoT for short) uses Internet of Things technology to improve production and industrial processes. These processes increasingly require connected devices to perform their tasks effectively.

Data generated over the Internet of Things is growing exponentially faster than the traditional cloud environment where data is stored, so just the amount of data can justify the acceleration. In addition, in the cloud as the destination, problems related to data transfer (delay and bandwidth) occur, so travel speed is the main issue. This edge is necessary as a solution to the inefficiency of IIoT to Cloud architecture.

IIoT market predictions

Industrial IoT devices and edge computing have grown at impressive rates. Accenture predicts the IIoT market will reach $500 billion by 2020; and IIoT already generates 400 zetabytes a year. Gartner estimates that IoT currently generates about 10% of enterprise data; by 2022, Gartner has predicted this will increase to 50%.

According to IDC, IT’s annual investment on edge infrastructure will hit 18% of total IoT spending; and per last year’s Forrester Analytics Global Business Technographics Mobility Survey, 27% of global telecom decision-makers say their companies will either implement or expand edge computing this year.

Source: https://www.cisco.com/c/en/us/solutions/internet-of-things/industrial-iot-devices.html

Perimeter (edge) computing architectures bring computing processing closer to the users and devices that need it, rather than centrally processing it in a local data center or public cloud. This edge is important for industrial and production processes that use large amounts of data that require fast response times and tight security.

Fast data processing of Industrial IoT devices

When industrial IoT devices and edge processing work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, such as a smart meter, a parking meter or a connected trash can in a street apartment. The installation of sensors with internet access in metropolitan garbage containers is becoming increasingly common for smart urban engineers. You can then remotely monitor the container using the sensor. When it is full, the city sanitation service receives a notification and can register an order and empty the container.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Arduino or Raspberry Pi? Pros and cons in IoT use.

Some people consider the Arduino platform to be the best for beginners, however, the novice will handle both Arduino and Raspberry Pi board. The choice between platforms should mainly depend on the characteristics of the project.

The origin of both platfoms

The founder of Arduino is Massimo Banzi, a lecturer at the now-defunct Italian Interaction Design Institute Ivrea, who developed a microcontroller in cooperation with students from this university. The Arduino programming language, based on the Wiring environment and basically on the C/C++ language, was designed by Hernando Barragán, a student of Banzi. The site prepared by Hernando Barragán presents exactly all the work on the project, which clearly shows that this success has more than one father.

In the case of Rasberry Pi, the project also had its source at the university. More specifically, at the University of Cambridge. Three lecturers: Jack Lang, Alan Mycroft and Robert Mullins came up with the idea of ​​developing a simple and above all cheap computer for learning programming. The first prototypes were created between 2006 and 2008. In the next step, seeing the potential of their solution, the men established cooperation with Pete Lamas, an integrated circuit designer at BroadCom, and David Braben, one of the developers of the Elite game, and together they founded the Raspberry Pi Foundation.

As a result, both platforms, which were originally intended to be used for learning by students, due to their low price and simplicity of use, became extremely popular among amateur users of consumer electronics and control, and appeared in mass sales.

So what should you choose – Arduino or Raspberry Pi?

The answer is basically simple – Arduino is ideal for simpler projects. Raspberry Pi will be useful for solutions that require more computing power. Arduino has only 2 kilobytes of RAM. Raspberry Pi has a RAM size of 1 GB. So Arduino is a simple microcontroller, meanwhile Raspberry is actually a small computer. Not without significance is the fact that the Arduino IDE is easier to use than Linux. So if you need a simple control of watering your garden, Arduino will work perfectly. Several sensors and a few lines of code will do the trick. For Raspberry Pi, to achieve the same effect, you will first need to install the system and the necessary libraries. There will be a lot more work and the effect will be the same – watering the garden at a specific time.

So choose Arduino when you need to use a simple solution for frequently repeated activities, e.g. controlling the watering of the garden, switching on and off the external lighting at a specific time, opening the gate, etc. However, because Raspberry can run many tasks at the same time, it is a computer, work simultaneously as a home printer server and operate the monitoring system. Home weather stations are popular and Raspberry will be perfect for this application because of the need to collect information from several sensors (temperature, wind strength, humidity). Raspberry Pi will therefore be a good choice for anyone interested in IoT, i.e. the Internet of Things at home. Examples of ready projects can be found here: https://modberry.techbase.eu/

Why not both?

Nothing prevents you from starting with Arduino and continuing with Raspberry Pi. By using Arduino or ESP32-based solutions you will learn the basics and you will get the effect quickly and relatively easily. But only Rasbperry Pi will allow you to make much more difficult projects. And both platforms can be combined with each other. Arduino/ESP32 can be used to read information from sensors and control e.g. motors (for example a garage door). Raspberry Pi will control all devices and send the collected data, e.g. to a mobile phone. You can do more together.

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

When the news came out that ventilator shortages could be a problem, many saw the need for alternatives to the big manufacturers and rushed to create them. Unlike industrial projects, these projects were open and shared. Currently, Robert Reed and his group are starting to systematically evaluate the ranking of over 80 such open source projects.

Their work is a milestone in public research and development efforts to solve problems. For many ventilator builders, the group recognized the need for independent evaluation and testing of various projects. This control provides important feedback to both designers and future builders. This is a service you can expect from government regulators if they can act very quickly.

Reid and colleagues Geoff Mulligan, Lauria Clarke, Juan E. Villacres Perez and Avinash Baskaran to help to learn about these studies. This includes submission of modular team designs that allow distributed production and unique suggestions for testing and monitoring these systems. This is called VentMon.

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. The M-Bus wireless bus has been developed as a standard to meet the needs of the European network of media meters and remote reading systems and forms the basis of a new advanced measurement infrastructure (AMI). The frequency of M-Bus and sub-GHz wireless connections has been used for several years, but is still evolving to adapt to changing environments and take advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Intelligent network devices require robust long-range wireless communication. The most common frequencies are around 868 MHz, 434 MHz and 169 MHz, which are unlicensed bands in Europe and offer better radio wave propagation compared to 2.4 GHz. By using one of these unlicensed bands, radio waves can reach difficult areas such as underground meters or the location of buildings with many walls or obstacles. Another advantage of operating in the unlicensed band is that utilities have lower solution costs.

COVID-19 and wireless technologies

In times of COVID-19 pandemic hazards, the use of wireless technologies is often a must, to prevent further spread of the coronavirus. One of obvious choices for Internet of Things and home monitorng is Wireless M-Bus implementation.

TECHBASE has added high performance module for Wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

When the news came out that ventilator shortages could be a problem, many saw the need for alternatives to the big manufacturers and rushed to create them. Unlike industrial projects, these projects were open and shared. Currently, Robert Reed and his group are starting to systematically evaluate the ranking of over 80 such open source projects.

Their work is a milestone in public research and development efforts to solve problems. For many ventilator builders, the group recognized the need for independent evaluation and testing of various projects. This control provides important feedback to both designers and future builders. This is a service you can expect from government regulators if they can act very quickly.

Reid and colleagues Geoff Mulligan, Lauria Clarke, Juan E. Villacres Perez and Avinash Baskaran to help to learn about these studies. This includes submission of modular team designs that allow distributed production and unique suggestions for testing and monitoring these systems. This is called VentMon.

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Bulgarian open equipment specialist, Olimex, has started stocking compact modules to add Low-Power NarrowBand-IoT (NB-IoT) connectivity (LPWAN) to the project: the NB-IoT-BC66 family.

NB-IoT is low power wide area networking technology which uses existing GSM LTE technology and has many advantages versa LoRa,” the company explains. “GSM network quality of service; single GSM cell can talk to up to 100,000 devices; high; communication speed 25.5kbps up and downlink; secure communication using LTE encryption; better range than LoRa both in urban and rural area (* depend on cell operating frequency – best range is on 850MHz.)

Source: https://olimex.wordpress.com/2020/04/07/new-nb-iot-bc66-modules-with-size-only-26×26-mm-contain-everything-you-need-to-add-nb-iot-functionality-in-your-next-project/

Olimex has launched four NB-IoT breakout boards. They are all based on the Quectel BC-66 module. NB-IoT-BC66 is the basic model, NB-IoT-BC66-ANT includes an attached GSM antenna, NB-IoT-BC66H contains a pre-soldered header, NB-IoT-BC66 and NB-IoT-BC66H-ANT combines both a soldered header and an attached antenna.

Olimex BC66 breakout board’s features and specifications:

  • NB-IoT Connectivity
    • Quectel BC-66 with worldwide GSM bands coverage
    • 25.5 kbps uplink and downlink
    • nano SIM card slot
    • u.FL antenna connector + optional antenna
  • I/O Expansion – 3x 10-pin header either unpopulated or fitted with male headers; Level shifters for 5x GPIOs, I2C, SPI, UART
  • Misc – Status LEDs
  • Power Supply –
  • Dimensions – 26×26 mm

Source: https://www.cnx-software.com/2020/04/08/olimex-quectel-bc66-breakout-board/

eModGATE with ESP32

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

One of the main problems during the COVID-19 crisis is the lack of adequate ventilator support for patients, a key component of equipment that has a major impact on the breathing of critically ill patients. It’s clear that more ventilators are needed because there aren’t enough devices currently in the hospital for all potential patients who can get infected. Developers use existing creation tools to participate in service calls, for example trying to create a cheap open source Arduino-based ventilators.

Another solution is the AgVa phone ventilator produced by the Indian based company AgVa Healthcare which used one tool we already have: smartphone. The AgVa Phone Ventilator, known officially as the AgVa Advance Pure, is a portable and mobile ventilator system that does the work of a typical ventilator. The vision around the ventilator is that patients should not always have to be stuck to the hospitals all the time.

The primary focus of the ventilator is to provide mechanical ventilation for everyone in need. Its small package ensures easy storage and transportation, whereas its intuitive user interface makes it extremely easy to use even for a non trained person. Finally due to its phenomenally low cost and no need for infrastructure requirement makes it ideal for scaling up the ICU.

Source: https://www.cnx-software.com/2020/04/09/agva-phone-ventilator-connects-to-a-smartphone-to-fight-covid-19/

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.