Wpisy

How Raspberry Pi Compute Module 4 might help IoT & Industrial Automation?

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Update on Raspberry Pi’s Compute Module 4 features [15.10.2020]

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Compute Module & Industrial IoT symbiosis

It a matter of time before we will see Raspberry Pi Compute Module 3+ successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board? What changes will it bring to Industrial use of IoT?

We are witnessing the fourth industrial revolution. Its key element is to create systems of interconnected sensors and actuators that operate within one global network. The so-called Internet of Things, unlike the consumer market, meet much more difficult requirements. To be able to meet harsh industrial expectations, many automation companies have already begun to offer solutions especially tailored to the application of the Internet of Things in Industry 4.0.

Although it may seem quite obvious nowadays, it is worth to be aware that just a few years ago such algorithms were practically not implemented at all in small consumer devices. It was only when people got used to smartphones that the idea of ubiquitous communication and adaptation of the way the system or device works to the environment became understandable. In fact, this confirms the validity of the idea of the Internet of Things as an important direction in the development of electronics – and in practice also automation.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 4 specification forecast

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode) might replace outdated H.264 (1080p30)
  • and OpenGL ES 3.0 graphics will replace 1.1, 2.0 versions,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

A Lite 4 version of Compute Module is to be expected too, without eMMC and probably limited SDRAM options.

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Raspberry Pi 4 as an alternative for gateway platform

The Raspberry Pi platform, which is no longer intended solely for educational and experimental purposes, is increasingly being promoted for Industrial IoT use. Despite few minor drawbacks of standard Raspberry Pi 4 Model B format, such as reduced working temperature range, as compared to industrial standards, RPi4 can serve as a platform for high performance computing on gateway level of installation, processing data gathered from lighter end-point units, such as ESP32-based solutions.

ModBerry M500 Gateway with Raspberry Pi 4

Raspberry Pi increase in IoT significance

More and more engineers and technology providers believe that it is suitable for industrial applications in the real world. Over the past few years, there has been a lot of discussion about the use of Raspberry Pi in industry, most of which emphasize that Raspberry Pi is a great tool for engineering experiments, but not so much for industrial applications in the real world. While it is true that the Raspberry Pi is not considered the best choice for mission-critical applications, it is also true that the Raspberry Pi is no longer a platform for experimentation.

Latest Raspberry Pi 4 development board, equipped with a 1.5GHz quad-core 64-bit ARM Cortex-A72 processor (approximately 3 times better performance than previous Cortex-A53 powering Raspberry Pi 3+ Model B and Compute Module 3 and 3+). can be chosen from 1GB / 2GB / 4GB LPDDR4 SDRAM options.

Raspberry Pi 4 continues the tradition of one of the most versatile and cheapest computer devices. It can be used for virtually anything from proprietary IoT solutions to a full-fledged desktop computer. The new Malinka has two micro-HDMI ports, a Gigabit Ethernet port, two USB 3.0 type A ports and two USB 2.0 type A ports.

Raspberry Pi 4, with 2xHDMI, Gigabit Ethernet and 2xUSB3.0
Raspberry Pi 4, with 2xHDMI, Gigabit Ethernet and 2xUSB3.0

Industrial use of Raspberry Pi 4

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

Over 10 million Raspberry Pi’s have been sold and the Raspberry Pi is likely to stay as a new standard in the industry. Official Raspbian OS is free operating system based on Linux Debian optimized for the Raspberry Pi comes with over 35,000 packages, pre-compiled software bundled in a nice format for easy installation. ModBerry devices are compatible with Raspberry Pi accessories, supported by Raspberry Pi Foundation. ModBerry M500 now with Raspberry Pi 3 Model B+ / Raspberry Pi 4 Model B support.

Arduino ESP32 Serial Port to TCP Converter via WiFi

TECHBASE posted new class, in which you will create serial port to TCP converter using Arduino code running on ESP32 processor. We will use one of device which uses such processor: Moduino X ESP32. For TCP communication WiFi module will be used.

You will need:

  • Moduino X2 (may be also X1) ESP32 device (check this website to find out more)
  • PC with Linux operating system
  • socat application
  • RS-232/RS-485 port in your computer or USB to RS-232/RS-485 converter (for programmming and testing)

Introduction

In example, data sent to serial port (which is used as terminal port in regular Micropython ESP32 device) will be send via WiFi using TCP protocol. It also decodes incomming TCP packets and writes them to serial port. Then virtual serial port can be opened for that TCP packets and perform serial communication. We will use socat application for that.

You can read the complete tutorial at Hackster.io:

SIMCom SIM7000G

TECHBASE’s Industrial IoT devices, ModBerry & Moduino series supports latest SIMCom global-band SIM7000G eMTC & NB-IoT Module. Now the latest SIM7000G as well as 7000E / 7000A versions of modem are available at IIoT-Shop.

SIMCom SIM7000G

Our ModBerry / Moduino devices equipped with latest SIM7000G modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

    • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
    • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
    • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

    • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
    • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
    • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
    • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

You can browse wireless modem category here: https://iiot-shop.com/product-category/modems/

UP Board Squared ModBerry M2000

First Industrial IoT device based on UP Board

In 2017, the first unit that entered the ModBerry series was a device called ModBerry M1000, utilizing the capabilities of Aaeon’s UP Board platform. The solution uses Quad-core Intel Atom x5-Z8350 processor with 4x 1.44GHz frequency (boost up to 4x 1.92GHz), up to 4GB RAM and 64GB eMMC on board. The platform also features USB 3.0 and Gigabit Ethernet 10/100/1000Mbps for faster communication and supports various operating systems, e.g.: full distribution of Microsoft Windows 10 Pro/Home/IoT, Microsoft Windows 10 IoT Core, Linux and Android.

To read more about Industrial ModBerry solutions, visit: https://iot-industrial-devices.com/

New base platform for Industrial ModBerry device

New addition to TECHBASE’s Industrial IoT Ecosystem is Modberry M2000, powered by Aaeon’s UP Squared development platform, to maximise the performance of Gateway Layer and provide the best data management for end-point layer, built with Industrial Moduino ESP32 devices.

ModBerry M2000 is an industrial computer series designed for the needs of automation, telecommunications, remote supervision and monitoring. ModBerry M2000 comes a choice of processor: Dual-Core Intel N3350 2×2.4GHz or Quad-Core Intel N4200 4×2.5GHz, 2/4/8GB and 16/32/64/128GB eMMC on-board with possibility to expand the storage even further with SATA3 & M.2 slot.

ModBerry M2000 platform can be extended with supported ExCard modules, including physical industrial interfaces: RS-232/485 ports, Digital I/Os, Analog I/Os, Relay, Ethernet, 1-Wire, USB, CAN; and wide range of wireless communication modules: Wi-Fi, Bluetooth GPRS/3G/LTE, for energy-efficient NarrowBand-IoT/LTE cat. M1/NB1, GPS, Wireless M-Bus, LoRa, ZigBee and many more.

ModBerry device and be equipped with dedicated iMod software platform to support standard protocol, such as MQTT, MODBUS, SNMP, M-Bus and many custom protocols. iMod – an innovative software platform allowing for quick start-up and full exploitation of device capabilities without the need for writing programs. A fully configurable system is reflecting typical C-L-V (Convert-Log-Visualize) use. Of course, the PLC software for creation of algorithms in the ladder system with the capability of operation on ModBerry device services the MODBUS protocol is also available.

To order sample devices, visit our new Industrial IoT Shop and ask our Sales Department via chat about new ModBerry M2000: 

Various data connection protocols & MQTT data management solutions

To take full advantage of the TECHBASE’s Industrial IoT Ecosystem’s capabilities, you can build your own installation, depending on project requirements, choosing from variety of Gateways (Gateway Layer) to control data collected from an array of Moduino edge devices (Sensor Layer). Moduino can be programmed in one of open software platforms, e.g. MicroPython to gather the data and send it, using MQTT standard protocol, further to Gateway and/or cloud service.

Both Moduino ESP32 and Pycom-based Moduino supports open & free libraries, shared by Pycom, tested and approved by constantly growing ESP32/Arduino community. TECHBASE company has plans to provide an open-source platform for managing services & remote configuration and control of endpoint Moduino devices using MicroPython.

MQTT Data Management

Wide range of protocol support

All TECHBASE’s solution can be empowered with iMod software incl. protocol support for industrial interfaces, e.g. M-Bus, Modbus, SNMP, MQTT. iMod software works seamlessly with Node-RED using MQTT protocol, allowing use of bacnet and direct control over devices I/Os with Google’s platform-neutral protobuf – extensible mechanism for serializing structured data and zeroMQ controls to connect the code in any modern language, on any platform. The protocol drivers library can be expanded with CODESYS development system to support PROFIBUS, CANopen, EtherCAT, PROFINET and EtherNet/IP.

Welcome to the series of configuration instructions for ModBerry and Moduino ESP32 devices. In this class, you will program ESP32 processor to be Modbus TCP Master.

We will use two devices, which contain this processor: Moduino ESP32 and Pycom. Both devices are running in MicroPytthon environment. Our Modbus Slave will be PC computer with Modbus simulator software running on it.

You will need:

  • Moduino ESP32 or Moduino Pycom device (check this website to find out more about Moduino ESP32 device and this to check Pycom device)
  • PC with Linux operating system
  • RS-232/RS-485 port in your computer or USB to RS-232/RS-485 converter

You can read the complete tutorial at Instructables.com:

 

Sleep functionality for ModBerry/Raspberry Pi devices

TECHBASE company designed new extension module for RaspberryPi-based devices, ModBerry series for better power management in changing conditions of industrial environments. With the use of GPIO the module can manage sleep mode or safe shutdown of device in terms of unexpected drop in the power network.

In last few years developers marketed wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using schedule/timer. Another option is wake on external trigger, e.g. change of input, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.

The preliminary module for ModBerry devices is available on request and delivery time will be specified by Sales Dept. depending on the size of the project.

Sleep mode with additional power backup

Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.

Advanced power management solution

Most advanced configuration includes use of Moduino ESP32 device for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by Moduino controller via Wi-Fi/GSM/LAN networks.

Moduino-ModBerry symbiosis allows wide range of wake-up/sleep schedule customization, in order to perform best and save energy accordingly to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

New SuperCap options for Moduino/ModBerry

The SuperCap UPS-SC01 backup power supply is equipped with a highly available backup feature to safely bridge fluctuations, drops or failures accompanying standard 9~30VDC supply voltage and avoid interruption of output voltage in industrial and automation environments. For this purpose SuperCap UPS-SC01 utilizes two supercapacitors (so-called supercaps) as a durable, cycle-resistant and maintenance-free solution for backup energy storage and failure safety.

The UPS-SC01 model is available for purchase at price set to 90€. SuperCap family offers now preliminary and revised models: UPS-SC02 with twice the capacity at 135€ and UPS-SC04 respectively at 180€ with quadrupled capacity of the base device, which can be preordered at our new Industrial IoT Shop, here: https://iiot-shop.com/product/supercap-ups/

TECHBASE’s Industrial IoT devices, ModBerry & Moduino series, now supports latest SIMCom global-band SIM7000G eMTC & NB-IoT Module. New SIM7000G supersedes previous 7000E / 7000A / 7000C versions of modem and provides a universal band set with global coverage, in opposite to Europe, America and China-only solutions.

Our ModBerry / Moduino devices equipped with latest SIM7000G modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

Our ModBerry / Moduino devices with global-band SIM7000G are available for testing and developing purposes, due to pending certifications of this module. For more information please contact our sales managers via live chat or contact forms.

 

 

The new SuperCap UPS-SC01 backup power supply is equipped with a highly available backup feature to safely bridge fluctuations, drops or failures accompanying standard 9~30VDC supply voltage and avoid interruption of output voltage in industrial and automation environments. For this purpose SuperCap UPS-SC01 utilizes two supercapacitors (so-called supercaps) as a durable, cycle-resistant and maintenance-free solution for backup energy storage and failure safety.

As an addition to Industrial IoT family of TECHBASE’s products, such as ModBerry (Raspberry Pi Compute Module 3 powered) industrial gateways and Moduino (ESP32 powered) end-point devices, the SuperCap UPS-SC01 serves well as an additional, highly efficient and fanless power source to allow continuous operation of connected devices in difficult conditions, such as extended industrial temperature range. Perfect solution for a multi-range applications, especially for embedded IIoT / Industry 4.0 systems, where stability and high availability is most important.

Czytaj dalej