Wpisy

In March, sales of Raspberry Pi single-board computers totaled 640,000. The consumer find it the cheapest way to start tinkering and drove to the second-largest sales month since Raspberry Foundation began selling for home use.

Other uses of Raspberry Pi computers are more directly associated with the appearance of COVID-19. For example, in Colombia, efforts are underway to run a ventilator on a Pi computer, and if successful, it will help solve the problem of the lack of traditional ventilation equipment in this country.

I think what this is telling us is that we’re seeing genuine consumer use of the product. It’s not like your desktop PC – you’re not going to be able play Crysis on it – but if you want a machine you can use to edit documents, use the web, use Gmail and Office 365 and all the baseline use cases of a general purpose computer, the Raspberry Pi 4 is a product we’ve made to get over that bar.

Eben Upton, the Raspberry Pi’s co-creator for Techrepublic

When the Raspberry Pi Foundation asked to talk about how to deal with COVID-19 using Raspberry Pi devices, one of the most common uses he saw was 3D printing with use of Raspberry Pi, especially for 3d-printed faceshields.

Raspberry Pi 4
Raspberry Pi 4

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

The Colombian medical team tests a fan made with the Raspberry Pi and easily available parts. Robotics engineer Marco Mascolo said he made the project because he knew that machines were in great demand to handle Covid-19. The design and code was published online in March by a Californian, stating that he had ’no previous experience creating medical devices’.

The ventilator control computer is the most important part. Raspberry Pi can set the air pressure, open and close the valves to adjust if the patient needs full or partial breath support, and Mascorro has integrated the code with open software so that anyone can use or change it for free.

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

Aries Embedded announced one of the first computing modules with the SoF PolarFire function. It is equipped with a Linux RISC-V SoC chip with a Microchip Microsemi FPGA processor. The M100PFS has the same dimensions of 74 x 42 mm as the similar M100PF module from Aries and is equipped with PolarFire FPGAs without RISC-V core for Linux.

The two major M100PFS SKUs are:

  • M100PFS-025ADA0 — MPFS025T FPGA with 23K LE, 68 math blocks, 4x SERDES; 1GB LPDDR4 RAM for HMS (RISC-V/Linux); 4GB eMMC
  • M100PFS-250AECC — MPFS250T FPGA with 254K LE, 784 blocks, 16x SERDES; 4GB LPDDR4 each for HMS and FPGA; 8GB eMMC

Source: http://linuxgizmos.com/linux-powered-module-charges-up-the-risc-v-polarfire-soc/

Aries’ M100PFS a competition for Raspberry Pi 4 in IoT
M100PFS

PolarFire SoC from Microchip combines the previously introduced PolarFire FPGA card with 4x RISC-V U54-MC SiFive core. Microchip claims that PolarFire SoCs are superior to hybrid SoCs with an arm / FPGA, such as Xilinx Zynq, with more configurable and open RISC-V designs, lower power consumption and much better real-time deterministic functions. I am In December, the company called it „the first FPGA SoC chip with deterministic and consistent RISC-V processor clusters and the deterministic L2 memory subsystem enabling the use of Linux and real-time applications.”

Industrial use of market Raspberry Pi 4 SBCs

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

ModBerry M500 with Raspberry Pi’s 4

ModBerry M500 also utilizes many more SBC platforms, such as Orange Pi, NanoPi and Intel-based UpBoard. Find more information here: https://iiot-shop.com/product/modberry-m-series/

Boosted Raspberry Pi 4 with SSD support

Many developement boards can be used in home and industrial applications to control and manage data. Check out latest video from open-tech infuencer, Andreas Spiess, in which he uses Raspberry Pi and SSD drive with Berryboot to enhance Raspberry Pi data storage capacity.

Industrial use of Raspberry Pi 4

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

Raspberry Pi 4

Over 10 million Raspberry Pi’s have been sold and the Raspberry Pi is likely to stay as a new standard in the industry. Official Raspbian OS is free operating system based on Linux Debian optimized for the Raspberry Pi comes with over 35,000 packages, pre-compiled software bundled in a nice format for easy installation. ModBerry devices are compatible with Raspberry Pi accessories, supported by Raspberry Pi Foundation. ModBerry M500 now with Raspberry Pi 3 Model B+ / Raspberry Pi 4 Model B support.

Rock Pi X - Next Intel-based clone of Raspberry Pi

Every fan of new technologies has heard of small single-board computers (SBC) in the form of Raspberry Pi. Raspberry debuted on the market in many different versions, and the current model is Model 4B. A lot of people got infected with it for DIY, programming or Linux. No wonder that many other companies are trying to replicate British success. One of them is Rock Pi, which has just presented Rock Pi X. Compared to many other SBCs available on the market, it does not use a processor based on ARM architecture, but a chip from Intel. However, it is already quite old and cheap CPU, but it translates into a low price of the device.

Next Intel-based Rock Pi X clone of Raspberry Pi
Rock Pi X (front look). Source: https://wiki.radxa.com/RockpiX

Another player on SBC market – Rock Pi X

Rock Pi X is a single-board computer with dimensions of 52 x 85 x 18 millimeters. The heart of the device is the Intel Atom x5-Z8300 processor from 2015, which has 4-cores and 4-threads clocked from 1.44 to 1.88 GHz, 2 MB Cache memory and integrated graphics Intel HD Graphics (Cherry Trail). RAM memory depends on the chosen variant and it can be 1, 2 or 4 GB DDR3L 1866 MHz. There is no built-in memory here, but there is a slot for MicroSD cards and eMMC modules. Model Rock Pi X A has no wireless connection (only RJ-45 socket), while Model B has a module 802.11ac WiFi + Bluetooth 4.2 LE.

Among the available connectors we will find one HDMI 1.4, headphone port, one USB 3.1 Gen 1, two USB 2.0, one USB type C with OTG support and a 40-pin GPIO identical to that of the Raspberry Pi. Most importantly, however, that the use of the x86 processor allows the normal installation and support of Windows 10, and not its prosthesis with the annotation ARM. However, it should be remembered that the discussed Atom was not a performance demon even at the time of its release. Rock Pi X will be available soon, suggested prices are as follows:

  • Model A 1GB RAM – $39
  • Model A 2GB RAM – $49
  • Model A 4GB RAM – $65
  • Model B 1GB RAM – $49
  • Model B 2GB RAM – $59
  • Model B 4GB RAM – $75
ModBerry M500 with Raspberry Pi’s 4

Industrial use of market SBCs

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

ModBerry M500 also utilizes many more SBC platforms, such as Orange Pi, NanoPi and Intel-based UpBoard. Find more information here: https://iiot-shop.com/product/modberry-m-series/