Industrial automation is a rapidly growing field that relies on powerful and efficient computing platforms to control and monitor complex processes. Two popular options for industrial automation applications are the Raspberry Pi Compute Module 4 and the Radxa CM3. In this article, we will compare the technical features of these two boards and discuss their suitability for industrial automation.
CM4 vs CM3?
The Raspberry Pi Compute Module 4 is equipped with a quad-core Cortex-A72 CPU clocked at up to 1.5GHz. The Cortex-A72 is a high-performance core that is ideal for applications that require a lot of computational power, such as machine learning and computer vision.
On the other hand, the Radxa CM3 is powered by the Rockchip RK3566 processor, which features four Cortex-A55 cores clocked at up to 2.0GHz. While the Cortex-A55 is not as powerful as the Cortex-A72, it is designed for power efficiency, making it a better option for battery-powered devices or IoT applications.
What about the memory?
The Raspberry Pi Compute Module 4 is available in several configurations, ranging from 1GB to 8GB of LPDDR4 RAM. It also features an optional 8GB, 16GB, or 32GB eMMC flash storage.
The Radxa CM3, on the other hand, comes with 2GB or 4GB LPDDR4 RAM, and 16GB or 32GB eMMC flash storage. While the Raspberry Pi Compute Module 4 offers more RAM options, the Radxa CM3 comes with more eMMC storage options.
Which module comes best in terms of features?
The Raspberry Pi Compute Module 4 offers a wide range of connectivity options, including dual-band 2.4GHz and 5GHz Wi-Fi, Bluetooth 5.0, Gigabit Ethernet, and PCI Express 2.0. The Radxa CM3 features dual-band 2.4GHz and 5GHz Wi-Fi, Bluetooth 5.0, and Gigabit Ethernet.
Both the Raspberry Pi Compute Module 4 and the Radxa CM3 come with features that are useful for industrial automation applications. For example, they both offer long-term availability, support for industrial temperature ranges, and high reliability. However, the Raspberry Pi Compute Module 4 offers some additional features that may be useful for industrial applications, such as support for dual display output and a wider range of peripherals.
In conclusion, the Raspberry Pi Compute Module 4 and the Radxa CM3 are both powerful and efficient computing platforms that are well-suited for industrial automation applications. The Raspberry Pi Compute Module 4 is better suited for applications that require high computational power, while the Radxa CM3 is better suited for applications that require power efficiency. Ultimately, the choice between these two boards will depend on the specific needs of the industrial automation application in question.
ModBerry R1 industrial supply
The ModBerry R1 is available to order from several online retailers, and it is a cost-effective alternative to the Raspberry Pi Compute Module 4. With its compact size and powerful hardware, the ModBerry R1 is a great solution for users who need a single-board computer for their projects. Whether you are building an industrial control system, a home automation system, or a media center, the ModBerry R1 is an excellent choice.
Raspberry Pi Compute Module 4 scarcity has created an opportunity for alternatives to emerge, and the ModBerry R1 with Radxa CM3 is one such alternative. With its powerful hardware and compatibility with the Raspberry Pi, the ModBerry R1 is a cost-effective solution for users who need a single-board computer for their projects. If you are looking for a powerful and versatile single-board computer, the ModBerry R1 is definitely worth considering.
https://iot-industrial-devices.com/wp-content/uploads/2023/03/rpi-cm4-radxa-cm3.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2023-03-02 16:06:312023-03-02 16:06:35Raspberry Pi Compute Module 4 vs Radxa CM3: A Technical Comparison for Industrial Automation
The Raspberry Pi Compute Module 4 (CM4) has been in high demand since its release in 2020, due to its powerful hardware and versatility as a single-board computer. The CM4 has been used in a wide range of applications, from industrial control systems to media centers and home automation systems. However, the high demand for the CM4 has resulted in a scarcity of the device, making it difficult for many users to get their hands on one.
Low supply, high demand
To address the issue of low supply, several companies have started offering alternatives to the Raspberry Pi Compute Module 4. One such alternative is the ModBerry500 R1, which is based on the Radxa CM3. The ModBerry 500 R1 is a compact and versatile single-board computer that provides many of the same capabilities as the Raspberry Pi CM4. It features a powerful quad-core Arm Cortex-A53 processor and variety of RAM/eMMC options, making it suitable for a wide range of applications.
The Radxa CM3, which is the heart of the ModBerry 500 R1, is a highly integrated computer-on-module that combines a powerful processor, RAM, and storage in a compact package. The CM3 is fully compatible with the Raspberry Pi, which means that users can use the same software and accessories as they would with a Raspberry Pi. This makes it an ideal solution for users who want the power and versatility of the Raspberry Pi, but cannot get their hands on a CM4 due to its scarcity.
ModBerry R1 industrial supply
The ModBerry R1 is available to order from several online retailers, and it is a cost-effective alternative to the Raspberry Pi Compute Module 4. With its compact size and powerful hardware, the ModBerry R1 is a great solution for users who need a single-board computer for their projects. Whether you are building an industrial control system, a home automation system, or a media center, the ModBerry R1 is an excellent choice.
Raspberry Pi Compute Module 4 scarcity has created an opportunity for alternatives to emerge, and the ModBerry R1 with Radxa CM3 is one such alternative. With its powerful hardware and compatibility with the Raspberry Pi, the ModBerry R1 is a cost-effective solution for users who need a single-board computer for their projects. If you are looking for a powerful and versatile single-board computer, the ModBerry R1 is definitely worth considering.
Narrowband IoT (NB-IoT) is a revolutionary technology that is changing the way we think about the Internet of Things (IoT). This Low Power Wide Area Network (LPWAN) technology is designed for IoT devices that require low data rates and long battery life. It operates in a licensed spectrum and is optimized for low power consumption, making it ideal for devices that need to run for extended periods of time on small batteries or energy harvesting sources.
One of the most exciting applications of NB-IoT is the use of ModBerry devices. ModBerry is a range of industrial computer devices based on Raspberry Pi or similar computer boards. These devices are equipped with various sensors and communication interfaces that allow them to connect to a wide range of industrial and building automation systems. The combination of NB-IoT and ModBerry devices offers a powerful solution for a wide range of IoT applications.
ModBerry and NarrowBand-IoT applications
Building and facility management is one of the key applications of NB-IoT and ModBerry. These devices can be used to monitor and control various systems in a building, such as heating, ventilation, and air conditioning (HVAC), lighting, and security. The low power consumption of NB-IoT allows the devices to run for extended periods of time on small batteries, making them ideal for use in remote or hard-to-reach locations. This means that building managers can have real-time visibility into the systems that are critical to the operation of their buildings, and can make adjustments as needed to ensure optimal performance.
Industrial automation is another application of NB-IoT and ModBerry. These devices can be used to monitor and control various industrial systems, such as machinery, production lines, and conveyor belts. The low power consumption of NB-IoT allows the devices to run for extended periods of time on small batteries, making them ideal for use in remote or hard-to-reach locations. This means that industrial managers can have real-time visibility into the systems that are critical to the operation of their factories, and can make adjustments as needed to ensure optimal performance.
ModBerry as a Smart City controller
Smart cities is another area where NB-IoT and ModBerry can make a big impact. These devices can be used to monitor and control various systems in a city, such as traffic lights, parking, and environmental sensors. The low power consumption of NB-IoT allows the devices to run for extended periods of time on small batteries, making them ideal for use in remote or hard-to-reach locations.
ModBerry as a low-cost NB-IoT controller
The combination of NB-IoT and ModBerry devices provides a powerful solution for a wide range of IoT applications. With NB-IoT’s low power consumption and long battery life, combined with ModBerry’s flexibility and functionality, they’re ideal for a wide range of IoT applications such as building and facility management, industrial automation, and smart cities. Seeing how these technologies will evolve and improve in the future, and how they will impact our lives, is exciting.
https://iot-industrial-devices.com/wp-content/uploads/2023/01/modberry-nbiot.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2023-01-24 11:09:362023-01-24 11:14:14NarrowBand-IoT wireless communication for ModBerry & industry
Modbus is a communication protocol that is widely used in industrial automation systems. It was developed by Modicon (now Schneider Electric) in 1979 and is used to connect different devices and control systems in a network. Modbus is based on a master-slave architecture, where one device acts as the master and the other devices act as slaves. The master device sends requests to the slaves and the slaves respond with the requested information.
ModBerry is a device that uses the Modbus protocol to communicate with other devices in a network. It is a small computer that is based on the Raspberry Pi platform and it is designed to be used in industrial automation systems. The ModBerry device can be used as a master or a slave in a Modbus network and it can be used to connect different devices such as sensors, actuators, and controllers.
ModBerry advantages in the IoT market
One of the main advantages of using ModBerry is that it is a low-cost solution for industrial automation systems. It is also easy to use and it can be programmed using different languages such as Python, C++, and Java. Additionally, the ModBerry device is small and compact, which makes it easy to install in different environments. It also has a wide range of input and output options, such as digital inputs, digital outputs, analog inputs, and analog outputs, which makes it suitable for a variety of applications.
ModBerry can be used in various industrial applications such as building automation, energy management, and process control. For example, it can be used to monitor and control the temperature, humidity, and lighting in a building. In energy management, it can be used to monitor and control the consumption of electricity, gas, and water. In process control, it can be used to monitor and control the production process in a factory.
Another advantage of ModBerry is its flexibility and scalability. It can be easily integrated with other systems and devices, such as SCADA systems, PLCs, and IoT devices. This allows for a seamless integration of different systems and devices in a single network, which improves efficiency and reduces the complexity of the system.
ModBerry as a low-cost Modbus controller
In conclusion, Modbus is a widely used communication protocol in industrial automation systems and ModBerry is a low-cost, easy-to-use device that utilizes the Modbus protocol. It offers a wide range of input and output options and can be used in various industrial applications. Its flexibility and scalability make it a great solution for integrating different systems and devices in a single network.
The latest research report on global IoT-based smart homes evaluates the opportunities and current market landscapes, and provides detailed analysis and updates of relevant sections affecting global IoT-based smart homes. This research provides in-depth insight into key market changes including drivers, constraints, trends and opportunities for IoT-based smart homes. The main purpose of market research is to provide exclusive information on how the market will function in the forecast period from 2020 to 2036.
What are the developmental trends in Smart Home Based on IoT sectors that will impact the market?
Updated ClusBerry device for Smart Home and developers
A new addition to TECHBASE’s Industrial IoT Ecosystem is a variation of recent cluster device, ClusBerry based on multiple Raspberry Pi Compute Module 4 and custom cluster board allowing free configuration from two up to eight modules. Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with up to 4 Google Coral Edge TPU modules.
You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to internal Ethernet Switch and USB OTG to provide such feature and allow quick heal of the cluster.
For home applications and with the nod to software developers, we released ClusBerry device in less industrial casing, to be used in the comfort of own house – on your desk next to PC or wall-mounted in any convenient place. ClusBerry for Home is fully modular as it’s industrial version and offers the same performance and options.
New features of multiple Compute Modules 4 brought to new ClusBerry series
Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.
Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device.
Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4
Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi. However, the practical effectiveness of such solutions so far has not been of interest for several reasons. First of all, these solutions were most often associated with many mechanical limitations and the structure of the matrix itself required excessive wiring, preventing failure-free operation and the cost of the entire maintenance of the structure.
This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.
Wide range of ClusBerry modules
ClusBerry 9500-CM4 supports up to 8 cluster modules andcomes with a variety of interchangeable modules to choose from, including:
Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
ClusBerry 9500-CM4 with available expansion cards
ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.
ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:
GSM modem (4G/LTE and fast 5G modem)
economic NarrowBand-IoT technology
LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
custom wireless interfaces
Software cluster management with Docker and K3s Lightweight Kubernetes
With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.
Kubernetes provides:
Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
Automatic management of available resources. ClusBerry 9500-CM4provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
ClusBerry 9500-CM4 availability
First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.
https://iot-industrial-devices.com/wp-content/uploads/2021/06/smart-home-iot.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2022-07-27 09:21:192022-07-28 09:26:07Smart Home global trend makes IoT more relevant than ever before
Global IoT-based smart homes research report examines the opportunities and current market landscapes, as well as provides detailed analysis and updates regarding relevant sections affecting IoT-based smart homes worldwide. In this report, we provide in-depth analysis of key market developments, including drivers, constraints, trends, and opportunities for IoT-based smart homes. The primary objective of market research is to provide exclusive information on how the market will perform during the forecast period from 2020 to 2036.
What are the emerging trends in Smart Home based on IoT that will have an impact on the market?
ClusBerry device updated for Smart Homes and developers
A new addition to TECHBASE’s Industrial IoT Ecosystem is a variation of recent cluster device, ClusBerry based on multiple Raspberry Pi Compute Module 4 and custom cluster board allowing free configuration from two up to eight modules. Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with up to 4 Google Coral Edge TPU modules.
You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to internal Ethernet Switch and USB OTG to provide such feature and allow quick heal of the cluster.
For home applications and with the nod to software developers, we released ClusBerry device in less industrial casing, to be used in the comfort of own house – on your desk next to PC or wall-mounted in any convenient place. ClusBerry for Home is fully modular as it’s industrial version and offers the same performance and options.
New features of multiple Compute Modules 4 brought to new ClusBerry series
Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.
Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device.
Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4
To react fast enough in real time, various implementations need high hardware performance. As a result, arrays of processor blocks are constructed to assign each task to a processor block. A number of different types of SBC have been used for this purpose over the past few years, including Raspberry Pi of course. Despite this, the practical effectiveness of such solutions has not been a priority for a number of reasons. Firstly, these solutions were commonly associated with many mechanical limitations, and the matrix structure required excessive wiring, preventing reliable operation and increasing maintenance costs.
This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.
Wide range of ClusBerry modules
ClusBerry 9500-CM4 supports up to 8 cluster modules andcomes with a variety of interchangeable modules to choose from, including:
Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
ClusBerry 9500-CM4 with available expansion cards
ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.
ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:
GSM modem (4G/LTE and fast 5G modem)
economic NarrowBand-IoT technology
LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
custom wireless interfaces
Software cluster management with Docker and K3s Lightweight Kubernetes
With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.
Kubernetes provides:
Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
Automatic management of available resources. ClusBerry 9500-CM4provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
ClusBerry 9500-CM4 availability
First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.
https://iot-industrial-devices.com/wp-content/uploads/2021/06/smart-home-iot.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2022-07-15 09:21:142022-07-28 09:22:03IoT is more relevant than ever thanks to the smart home trend
Microsoft announced Windows 11 with new system requirements, including hardware with a TPM 2.0 chip. Altho not all computers, laptops, and tablets come with Trusted Platform Module (TPM), which can be a problem, especially if you need version 2.0.
According to a tweet from Shen Ye, Senior Director, Global Head of HTC Hardware Products, the price of TPM 2.0 has quadrupled, so while Windows 11 isn’t officially available yet, Microsoft has it legitimate, and the name is security.
Securing devices with Infineon industrial grade TPM
Infineon Technologies AG has unveiled a new security chip that defines the first TPM (Trusted Platform Module), designed specifically for industrial applications such as industrial computers, servers, industrial controllers and edge gates. The module protects confidential data in connected devices and reduces the risk of leakage of this information due to attacks, e.g. hackers.
The OPTIGA TPM SLM 9670 module protects the integrity of industrial systems and the identity of users using them. The system controls access to sensitive data at key locations in industrial environments, such as an automated factory. It also protects the cloud interface if the network uses one. The security system fully meets the TPM 2.0 standard developed by the Trusted Computing Group and is certified by an independent test laboratory in accordance with the criteria contained in this standard. The new module is meticulously controlled and certified by Infineon. Thanks to its use, it is possible to shorten the time of designing and introducing the device to the market, thanks to the ready security solution in the system.
The TPM system has a lifetime declared as 20 years. It allows programmers to perform firmware updates, which in turn enables them to meet the long-term security requirements in rapidly changing industrial environments. In this way, it can also reduce maintenance costs of industrial equipment thanks to secured remote software updates. The TPM chip will be available in serial production in the second half of 2019.
TPM 2.0 Key Features
Random Number Generator (RNG) according to NIST SP800-90A
TPM FW update functionality installed
6962 Bytes of free NV memory
Full personalization with Endorsement Key (EK) and EK certificate
Up to 3 keys in the volatile memory
Up to 7 keys in the NV memory
Up to 8 NV counters
Support of various cryptographic algorithms:
RSA-1024 and RSA-2048
SHA-1 and SHA-256
ECC NIST P256
ECC BN256
Security chip implementation in Industrial IoT devices
With knowledge of latest Industrial IoT security measures, the choice of proper end-point conroller or gateway is much easier than you think. Some manufacturers can implement TPM 2.0 security chip in production process, to allow users to generate certification keys after purchase, maximizing security of their installations. TECHBASE offers wide range of solutions, optionally aided with TPM system.
For example, ESP-32 based solution, Moduino X series and eModGATE series products offer the support for such security measures. Read more in Industrial IoT Ecosystem brochure, to understand the importance of reliable and secure hardware for Industrial IoT.
https://iot-industrial-devices.com/wp-content/uploads/2021/07/windows-11-tpm-2-0.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2022-06-07 09:21:182022-07-28 09:24:59Increased demand on the TPM 2.0 modules with Windows 11 announcement
The RAK2287 is a mini-PCIe LPWAN hub module based on the Semtech SX1302 that can be easily integrated with existing routers and other networking equipment with LPWAN gateway capabilities. It can be used on embedded platforms that offer a free mini PCIe slot with SPI connector. In addition to LPWAN functionality, the module is equipped with a ZOE-M8Q GPS chip that provides GNSS functionality.
This module is an exceptional, complete, and cost-efficient gateway solution offering up to 10 programmable parallel demodulation paths, an 8 x 8 channel LoRa® packet detector, 8 x SF5-SF12 LoRa® demodulators and 8 x SF5-SF10 LoRa® demodulators. It is capable of detecting an uninterrupted combination of packets at 8 different spreading factors and 10 channels with continuous demodulation of up to 16 packets. The module is well suited for Internet-of-Things (IoT) applications, that require node density of up to 500 nodes per km² in an environment with moderate interference.
Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.
Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as LoRa Gateway industrial device from TECHBASE.
Global IoT-based smart homes research report examines the opportunities and current market landscapes, as well as provides detailed analysis and updates regarding relevant sections affecting IoT-based smart homes worldwide. In this report, we provide in-depth analysis of key market developments, including drivers, constraints, trends, and opportunities for IoT-based smart homes. The primary objective of market research is to provide exclusive information on how the market will perform during the forecast period from 2020 to 2036.
What are the emerging trends in Smart Home based on IoT that will have an impact on the market?
ClusBerry device updated for Smart Homes and developers
A new addition to TECHBASE’s Industrial IoT Ecosystem is a variation of recent cluster device, ClusBerry based on multiple Raspberry Pi Compute Module 4 and custom cluster board allowing free configuration from two up to eight modules. Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with up to 4 Google Coral Edge TPU modules.
You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to internal Ethernet Switch and USB OTG to provide such feature and allow quick heal of the cluster.
For home applications and with the nod to software developers, we released ClusBerry device in less industrial casing, to be used in the comfort of own house – on your desk next to PC or wall-mounted in any convenient place. ClusBerry for Home is fully modular as it’s industrial version and offers the same performance and options.
New features of multiple Compute Modules 4 brought to new ClusBerry series
Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.
Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device.
Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4
To react fast enough in real time, various implementations need high hardware performance. As a result, arrays of processor blocks are constructed to assign each task to a processor block. A number of different types of SBC have been used for this purpose over the past few years, including Raspberry Pi of course. Despite this, the practical effectiveness of such solutions has not been a priority for a number of reasons. Firstly, these solutions were commonly associated with many mechanical limitations, and the matrix structure required excessive wiring, preventing reliable operation and increasing maintenance costs.
This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.
Wide range of ClusBerry modules
ClusBerry 9500-CM4 supports up to 8 cluster modules andcomes with a variety of interchangeable modules to choose from, including:
Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
ClusBerry 9500-CM4 with available expansion cards
ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.
ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:
GSM modem (4G/LTE and fast 5G modem)
economic NarrowBand-IoT technology
LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
custom wireless interfaces
Software cluster management with Docker and K3s Lightweight Kubernetes
With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.
Kubernetes provides:
Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
Automatic management of available resources. ClusBerry 9500-CM4provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
ClusBerry 9500-CM4 availability
First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.
https://iot-industrial-devices.com/wp-content/uploads/2021/06/smart-home-iot.png3851210adminhttps://iot-industrial-devices.com/wp-content/uploads/2019/11/iot-industrial-devices-1.pngadmin2022-05-04 14:10:022022-05-09 13:46:09IoT is more relevant than ever thanks to the smart home trend
The RAK2287 is a mini-PCIe LPWAN hub module based on the Semtech SX1302 that can be easily integrated with existing routers and other networking equipment with LPWAN gateway capabilities. It can be used on embedded platforms that offer a free mini PCIe slot with SPI connector. In addition to LPWAN functionality, the module is equipped with a ZOE-M8Q GPS chip that provides GNSS functionality.
This module is an exceptional, complete, and cost-efficient gateway solution offering up to 10 programmable parallel demodulation paths, an 8 x 8 channel LoRa® packet detector, 8 x SF5-SF12 LoRa® demodulators and 8 x SF5-SF10 LoRa® demodulators. It is capable of detecting an uninterrupted combination of packets at 8 different spreading factors and 10 channels with continuous demodulation of up to 16 packets. The module is well suited for Internet-of-Things (IoT) applications, that require node density of up to 500 nodes per km² in an environment with moderate interference.
Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.
Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as LoRa Gateway industrial device from TECHBASE.
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, you cannot refuse them without impacting how our site functions. You can block or delete them by changing your browser settings and force blocking all cookies on this website.
Other external services
We also use different external services like Google Webfonts, Google Maps and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.