Wpisy

The latest research report on global IoT-based smart homes evaluates the opportunities and current market landscapes, and provides detailed analysis and updates of relevant sections affecting global IoT-based smart homes. This research provides in-depth insight into key market changes including drivers, constraints, trends and opportunities for IoT-based smart homes. The main purpose of market research is to provide exclusive information on how the market will function in the forecast period from 2020 to 2036.

What are the developmental trends in Smart Home Based on IoT sectors that will impact the market?

Updated ClusBerry device for Smart Home and developers

A new addition to TECHBASE’s Industrial IoT Ecosystem is a variation of recent cluster device, ClusBerry based on multiple Raspberry Pi Compute Module 4 and custom cluster board allowing free configuration from two up to eight modules. Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with up to 4 Google Coral Edge TPU modules.

You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to internal Ethernet Switch and USB OTG to provide such feature and allow quick heal of the cluster.

Raspberry Pi Compute Module 4 Cluster for Smart Home

For home applications and with the nod to software developers, we released ClusBerry device in less industrial casing, to be used in the comfort of own house – on your desk next to PC or wall-mounted in any convenient place. ClusBerry for Home is fully modular as it’s industrial version and offers the same performance and options.

More information here: https://clusberry.techbase.eu/

New features of multiple Compute Modules 4 brought to new ClusBerry series

Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.

Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device. 

Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4

Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi. However, the practical effectiveness of such solutions so far has not been of interest for several reasons. First of all, these solutions were most often associated with many mechanical limitations and the structure of the matrix itself required excessive wiring, preventing failure-free operation and the cost of the entire maintenance of the structure.

Raspberry Pi Compute Module 4 Cluster

This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.

Wide range of ClusBerry modules

ClusBerry 9500-CM4 supports up to 8 cluster modules and comes with a variety of interchangeable modules to choose from, including:

  • Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
    • I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
    • Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
    • AI Gateway with 1x Coral Edge TPU via PCIe M.2, introduced in December 2020: https://iiot-shop.com/product/ai-gateway/ or up to 4x Coral Edge TPU via USB3.0
  • NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
  • USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
  • Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
  • SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
  • Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
Raspberry Pi Compute Module 4 Cluster

ClusBerry 9500-CM4 with available expansion cards 

ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.

ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces
Raspberry Pi Compute Module 4 Cluster for Smart Home

Software cluster management with Docker and K3s Lightweight Kubernetes

With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.

Kubernetes provides:

  • Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
  • Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
  • Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
  • Automatic management of available resources. ClusBerry 9500-CM4 provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
  • Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
  • Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
Raspberry Pi Compute Module 4 Cluster for Smart Home

ClusBerry 9500-CM4 availability

First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.

Sleep functionality for ModBerry 500 CM4 devices

TECHBASE company designed an extended version of Raspberry Pi Compute Module 4 based devices, ModBerry 500-CM4-PM series for better power management in changing conditions of industrial applications. With the use of GPIO the module can manage boot, sleep mode or safe shutdown of the device in terms of unexpected drop in the power network with help of built-in ESP32 module and Arduino environment.

In the last few years developers marketed a wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation

ESP32 based addon module for Raspberry Pi

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using a scheduler/timer. The module itself is based on ESP32-WROVER, used in the Moduino X series. ESP32 as a lightweight and low-powered solution is a perfect aid system for Raspberry Pi. Another option is wake on external triggers, e.g. change of input state, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.

Sleep mode with additional power backup

Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.

Advanced power management solution

Most advanced configuration includes use of ESP32 module, known from the successful, lightweight Moduino X series, for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by the internal ESP32 controller

Moduino-ModBerry symbiosis allows a wide range of wake-up/sleep schedule customization, in order to perform best and save energy according to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

ModBerry 500-CM4-PM availability

The preliminary ModBerry 500-CM4-PM devices are available on request and delivery time will be specified by the Sales Dept. depending on the size of the project. Contact via email or Live Chat here: https://iiot-shop.com/product/modberry-500-cm4-pm/

New features of multiple Raspberry Pi Compute Modules 4 brought to new ClusBerry series

Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Raspberry Pi Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.

Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device. 

Raspberry Pi Compute Module 4 Cluster

Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4

Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi. However, the practical effectiveness of such solutions so far has not been of interest for several reasons. First of all, these solutions were most often associated with many mechanical limitations and the structure of the matrix itself required excessive wiring, preventing failure-free operation and the cost of the entire maintenance of the structure.

Raspberry Pi Compute Module 4 Cluster

This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.

Wide range of ClusBerry modules

ClusBerry 9500-CM4 supports up to 8 cluster modules and comes with a variety of interchangeable modules to choose from, including:

  • Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
    • I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
    • Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
    • AI Gateway with 1x Coral Edge TPU via PCIe M.2, introduced in December 2020: https://iiot-shop.com/product/ai-gateway/ or up to 4x Coral Edge TPU via USB3.0
  • NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
  • USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
  • Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
  • SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
  • Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
Raspberry Pi Compute Module 4 Cluster

ClusBerry 9500-CM4 with available expansion cards 

ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.

ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces
Raspberry Pi Compute Module 4 Cluster

Software cluster management with Docker and K3s Lightweight Kubernetes

With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.

Kubernetes provides:

  • Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
  • Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
  • Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
  • Automatic management of available resources. ClusBerry 9500-CM4 provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
  • Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
  • Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
Raspberry Pi Compute Module 4 Cluster

ClusBerry 9500-CM4 availability

First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.

Raspberry Pi 4 is well known for its size and value, but will soon start to be seen for it’s significant performance. A few months ago, the Raspberry Pi Foundation announced the development of Vulkan support on Raspberry Pi 4. Today, the team published demonstration photos showing updates and progress in the current state of the project.

When we announced the effort back in January we were at the point of rendering a coloured triangle, which required only minimal coverage of the Vulkan 1.0 API in the driver. Today, we are passing over 70,000 tests from the Khronos Conformance Test Suite for Vulkan 1.0 and we have an implementation for a significant subset of the Vulkan 1.0 API.

Source: https://www.raspberrypi.org/blog/vulkan-update-now-with-added-source-code/

Rasbperry Pi 4 upgrade of ModBerry M500

In 2019, with the premiere of Raspberry Pi 4, TECHBASE upgraded their ModBerry M500 device with the latest revision of this popular SBC, further enhancing the performance of their device. New 1.5GHz quad-core 64-bit ARM Cortex-A72 processor (approximately 3 times better performance than previous Cortex-A53 powering Raspberry Pi 3+ Model B and Compute Module 3 and 3+). ModBerry M500 can now be configured from 2GB / 4GB LPDDR4 SDRAM options.

Revised ModBerry M500 features Gigabit Ethernet, USB3.0, two microHDMI ports supporting OpenGL ES 3.x and 4Kp60 hardware decode of HEVC video. The device is fully compatible with previous versions of Rasbperry Pi based Industrial IoT devices and accessories from TECHBASE.

Raspberry Pi & ESP32 use-hack of OpenMQTTGateway

Many developement boards can be used in home and industrial applications to control and manage data. Check out latest video from open-tech infuencer, Andreas Spiess, in which he uses Raspberry Pi and ESP32 boards to build and visualize weight loss system using Xiaomi scale and Node-RED, influxDB and Grafana. Open MQTT Gateway might come in handy too.

Industrial use of Raspberry Pi & ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Aries Embedded announced one of the first computing modules with the SoF PolarFire function. It is equipped with a Linux RISC-V SoC chip with a Microchip Microsemi FPGA processor. The M100PFS has the same dimensions of 74 x 42 mm as the similar M100PF module from Aries and is equipped with PolarFire FPGAs without RISC-V core for Linux.

The two major M100PFS SKUs are:

  • M100PFS-025ADA0 — MPFS025T FPGA with 23K LE, 68 math blocks, 4x SERDES; 1GB LPDDR4 RAM for HMS (RISC-V/Linux); 4GB eMMC
  • M100PFS-250AECC — MPFS250T FPGA with 254K LE, 784 blocks, 16x SERDES; 4GB LPDDR4 each for HMS and FPGA; 8GB eMMC

Source: http://linuxgizmos.com/linux-powered-module-charges-up-the-risc-v-polarfire-soc/

Aries’ M100PFS a competition for Raspberry Pi 4 in IoT
M100PFS

PolarFire SoC from Microchip combines the previously introduced PolarFire FPGA card with 4x RISC-V U54-MC SiFive core. Microchip claims that PolarFire SoCs are superior to hybrid SoCs with an arm / FPGA, such as Xilinx Zynq, with more configurable and open RISC-V designs, lower power consumption and much better real-time deterministic functions. I am In December, the company called it „the first FPGA SoC chip with deterministic and consistent RISC-V processor clusters and the deterministic L2 memory subsystem enabling the use of Linux and real-time applications.”

Industrial use of market Raspberry Pi 4 SBCs

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

ModBerry M500 with Raspberry Pi’s 4

ModBerry M500 also utilizes many more SBC platforms, such as Orange Pi, NanoPi and Intel-based UpBoard. Find more information here: https://iiot-shop.com/product/modberry-m-series/

Node-RED and Raspberry Pi

Node-RED is an interesting environment for modeling processes, by visually defining information flows. It is a module working in the node.js environment. It is a flow-based programming tool, originally developed by the IBM Emerging Technology Services team and now part of the JS Foundation.

History of Node-RED environment

Node-RED provides users with a ready-made set of easy-to-connect nodes and supports code creation by configuring data transmission and sensor communication to their applications. It is up to you whether you create a new flow of equipment to increase and control the economics of the IoT system. Hardware platform for this system can easily be Raspberry Pi based industrial device, like ModBerry computer.

Node-RED started life in early 2013 as a side-project by Nick O’Leary and Dave Conway-Jones of IBM’s Emerging Technology Services group. What began as a proof-of-concept for visualising and manipulating mappings between MQTT topics, quickly became a much more general tool that could be easily extended in any direction.

It was open-sourced in September 2013 and has been developed in the open ever since, culminating in it being one of the founding projects of the JS Foundation in October 2016.

Source: https://nodered.org/about/

Who can benefit from Node-RED?

Flow-based programming is ideal for the creators of IoT solutions for visualizing and controlling data flow, maintaining and managing a series of cause-related events. Apart from the fact that Node-RED can be run basically anywhere you can install NodeJS, this program is a card for IoT solution developers for mapping and maintaining solutions.

With the development and implementation of Internet of Things solutions around the world, Node-RED has become an invaluable tool for solution architects and programmers, due to its ease of use in flow programming and solution mapping. IoT solutions, also known as applications, are the convergence of the physical world with the digital world to extract valuable data for insight that increases process or system performance. This convergence results in countless triggers and events that must be performed to control systems or notify those responsible when the system is above its expectations.

How does Node-RED work?

Node.js is a runtime environment for programs written in JavaScript, currently based on the Chrome V8 engine. While I used to associate JavaScript only with scripts for animated galleries on websites, after a really short period of learning I notice the great advantages of using JS as a language for creating programs launched outside of the browser. Programs run in node.js work in the background, in the console, or even have their own UI with normal windows in Windows, macOS or Linux.

Node-RED example
Node-RED example

The principle of operation is relatively simple. Visually, we combine different blocks that perform specific functions. Through connections, Node-RED sends messages, which are basically a JavaScript object, consisting of various data.

Node-RED consists of a Node.js based runtime that you point a web browser at to access the flow editor. Within the browser you create your application by dragging nodes from your palette into a workspace and start to wire them together. With a single click, the application is deployed back to the runtime where it is run. The palette of nodes can be easily extended by installing new nodes created by the community and the flows you create can be easily shared as JSON files.

Source: https://nodered.org/about/

Sleep functionality for ModBerry 500 CM4 devices

TECHBASE company designed an extended version of Raspberry Pi Compute Module 4 based devices, ModBerry 500-CM4-PM series for better power management in changing conditions of industrial applications. With the use of GPIO the module can manage boot, sleep mode or safe shutdown of the device in terms of unexpected drop in the power network with help of built-in ESP32 module and Arduino environment.

In the last few years developers marketed a wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation

ESP32 based addon module for Raspberry Pi

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using a scheduler/timer. The module itself is based on ESP32-WROVER, used in the Moduino X series. ESP32 as a lightweight and low-powered solution is a perfect aid system for Raspberry Pi. Another option is wake on external triggers, e.g. change of input state, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.

Sleep mode with additional power backup

Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.

Advanced power management solution

Most advanced configuration includes use of ESP32 module, known from the successful, lightweight Moduino X series, for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by the internal ESP32 controller

Moduino-ModBerry symbiosis allows a wide range of wake-up/sleep schedule customization, in order to perform best and save energy according to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

ModBerry 500-CM4-PM availability

The preliminary ModBerry 500-CM4-PM devices are available on request and delivery time will be specified by the Sales Dept. depending on the size of the project. Contact via email or Live Chat here: https://iiot-shop.com/product/modberry-500-cm4-pm/

NarrowBand-IoT the new black of Industrial IoT

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

Docker VPN-based Raspberry Pi Server tutorial

Many developement boards can be used in home and industrial applications to control and manage data. Get secure remote access from anywhere via your own VPN based on Docker containers. Check out latest video from open-tech infuencer, Andreas Spiess, in which he uses Raspberry Pi and Docker, Node-RED, influxDB and Grafana to build custom Raspberry Pi data server.

Docker implementation in CM4 cluster – ClusBerry-2M

The introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry-2M opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.

ClusBerry-2M can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.

ClusBerry-2M series also offers two M.2 NVMe SSD slots and up to four standard miniPCIe module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces

Software cluster management with Docker and K3s Lightweight Kubernetes

With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry-2M is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.

Kubernetes provides:

  • Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
  • Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
  • Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module.
  • Automatic management of available resources. ClusBerry-2M provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
  • Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
  • Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.