Wpisy

Moduino ESP32 is a compact, powerful and versatile IoT device that can be used for various industrial automation and control applications. One of the communication protocols it supports is the M-Bus (Meter-Bus) protocol. This protocol is used for communication between energy meters, heat cost allocators and other devices in the energy management and building automation systems.

In this article, we will discuss how to use Moduino ESP32 with the M-Bus protocol using RS-232 communication.

Requirements

  • Moduino ESP32
  • M-Bus devices (e.g energy meters)
  • RS-232 to RS-232 cable

Hardware Connections

  1. Connect the Moduino ESP32 to the M-Bus device using an M-Bus cable.
  2. Connect the Moduino ESP32 to a computer using an RS-232 to RS-232 cable.

Software Setup

  1. Download and install the Arduino IDE from the official website.
  2. Open the Arduino IDE and go to File -> Preferences.
  3. In the Additional Board Manager URLs field, add the following URL: https://dl.espressif.com/dl/package_esp32_index.json
  4. Go to Tools -> Board: -> Board Manager and search for „esp32”.
  5. Install the „ESP32 by Espressif Systems”.
  6. Go to Tools -> Board and select „ESP32 Dev Module”.
  7. Go to Sketch -> Include Library -> Manage Libraries.
  8. Search for „MBus library” and install it.

Code

  1. Create a new sketch in the Arduino IDE.
  2. Include the M-Bus library by adding the following line at the top of the sketch:
cCopy code#include <MBus.h>
  1. Define the M-Bus object and the serial port for communication:
scssCopy codeMBus mbus;
HardwareSerial mbusSerial(2);
  1. In the setup() function, initialize the serial port for communication and start the M-Bus:
scssCopy codevoid setup() {
  mbusSerial.begin(2400, SERIAL_8N1, 16, 17);
  mbus.begin(mbusSerial);
}
  1. In the loop() function, read the M-Bus data and print it to the serial monitor:
scssCopy codevoid loop() {
  if (mbus.available()) {
    MBusDataFrame data = mbus.read();
    Serial.println(data.toString());
  }
}
  1. Upload the code to the Moduino ESP32 using the Upload button in the Arduino IDE.

Conclusion

With the above steps, you have successfully set up Moduino ESP32 with the M-Bus protocol using RS-232 communication. This will allow you to communicate with M-Bus devices and receive data from them, which can be further processed for industrial automation and control applications.

Order Moduino X now: https://iiot-shop.com/product/moduino/

Sigfox announces changes improving IoT applications

First major announcement is that Sigfox will launch a private network (PAN) that will allow IoT customers to choose private and global services according to their needs. The service was launched for the first time in France in the first quarter of 2020, but Sigfox will be implemented in over 65 countries.

The operator’s wide area network (WAN) will be completed next year in cooperation with Eutelsat. Sigfox provides coverage worldwide using the nano-satellite constellation launched by Eutelsat.

The Sigfox PAN offer will benefit from the existing Sigfox WAN ecosystem. Thanks to the potential to use all components on the market and the use of very low transmit power to support facilities without the need for batteries, the Sigfox PAN offer offers enormous potential,

Ludovic Le Moan, CEO and co-founder of Sigfox.

According to Sigfox, by the end of 2019, there will be more than 15 million registered facilities and over 1,500 customers using this solution in various industries around the world. Sigfox says that PAN customers can expect the same as WAN customers in terms of support and quality. PAN clients can choose to subscribe to additional „WAN Extension” services if needed if the device needs to communicate outside the local network.

Sigfox improving the accuracy of Atlas geolocation services

Internet of Things operators have now launched Atlas Native Complimentary. It is made available free of charge in exchange for the rights to process data regarding GPS data. These data are compared to the fingerprint of the Sigfox network using machine learning, which increases accuracy to 800 meters.

To further increase the accuracy of its geolocation services, Sigfox said it has completed the global implementation of Atlas WiFi in collaboration with HERE Technologies’ mapping experts.

Sigfox uses the global WiFi access point database here. Access points are checked by the Sigfox WiFi tracking module and more closely track the location of external and internal resources with less battery consumption than using GPS.

We are delighted to strengthen our partnership with Amadeus and share our combined expertise to create real digital transformation of the travel sector. Our strategic alliance named PinPoint will not only help to improve the travel experience, but this will also change completely the game for an industry looking for decades for THE technology able to save costs while improving efficiency and quality of services

Raouti Chehih, Chief Adoption Officer at Sigfox
eModGATE with ESP32

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Sigfox wireless technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

ESP-MESH is a network protocol based on the Wi-Fi protocol. ESP-MESH enables the connection of a large number of devices (hereinafter nodes) covering a large physical area (both inside and outside) over a single WLAN (wireless local area network). ESP-MESH self-organizes and self-heals, allowing you to build and maintain networks autonomously.

Traditional Wi-Fi Network Architecture. Source: espressif.com

Traditional Infrastructure of Wi-Fi network is a point-to-multipoint network in which a single central node called an Access Point (AP) is directly connected to all other nodes called stations. The AP is responsible for arbitrating and forwarding transmissions between stations. Some access points relay transmissions to and from external IP networks through routers.

Traditional Infrastructure Wi-Fi networks have the downside of having a limited coverage area as all stations need to be in range to connect directly to the access point. In addition, the maximum number of stations allowed in the network is limited by the bandwidth of the access point, making traditional Wi-Fi networks prone to overload.

ESP-MESH vs traditional Wi-Fi infrastucture

ESP-MESH differs from traditional Wi-Fi infrastructure networks in that the nodes do not have to connect to a central node. Instead, the node can connect with its neighbors. Nodes are responsible for relaying transmissions to each other. This allows for achieving interconnections without the need for nodes to be within the range of the central node, which significantly extends the coverage area of the ESP-MESH network. Likewise, ESP-MESH is less prone to congestion as the number of allowed nodes in the network is no longer limited by a single central node.

ESP-MESH Network Architecture. Source: espressif.com

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Silicon Labs recently announced two hardware modules based on its BG22 Secure Bluetooth 5.2 SoC: 6x6mm BGM220S system bundled (SiP) and slightly optimized for wireless performance with a better link budget. BGM220P introduced, large PCB variant, wider range.

Both modules can be integrated into products with a battery life of up to 10 years using a single coin cell battery. All variants of BGM220S/P can support Bluetooth directional discovery, and some components can also support Bluetooth mesh low power protocol.

Main features

  • Silicon Labs EFR32BG22 Arm Cortex-M33 with DSP instructions and floating-point unit, up to 512 kB Flash, 32 kB RAM, 2.4 GHz radio with TX power up to 8 dBm, and Embedded Trace Macrocell (ETM) for advanced debugging
  • Supported Protocols
    • Bluetooth Low Energy (Bluetooth 5.2)
    • Direction-finding
    • Bluetooth mesh Low Power Node

Source: https://www.cnx-software.com/2020/09/14/silicon-labs-bluetooth-5-2-bgm220s-sip-and-bgm220p-pcb-module/

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 and Bluetooth technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Sigfox announces changes improving IoT applications

First major announcement is that Sigfox will launch a private network (PAN) that will allow IoT customers to choose private and global services according to their needs. The service will be launched for the first time in France in the first quarter of 2020, but Sigfox will be implemented in over 65 countries.

The operator’s wide area network (WAN) will be completed next year in cooperation with Eutelsat. Sigfox provides coverage worldwide using the nano-satellite constellation launched by Eutelsat.

The Sigfox PAN offer will benefit from the existing Sigfox WAN ecosystem. Thanks to the potential to use all components on the market and the use of very low transmit power to support facilities without the need for batteries, the Sigfox PAN offer offers enormous potential,

Ludovic Le Moan, CEO and co-founder of Sigfox.

According to Sigfox, by the end of 2019, there will be more than 15 million registered facilities and over 1,500 customers using this solution in various industries around the world. Sigfox says that PAN customers can expect the same as WAN customers in terms of support and quality. PAN clients can choose to subscribe to additional „WAN Extension” services if needed if the device needs to communicate outside the local network.

Sigfox improving the accuracy of Atlas geolocation services

Internet of Things operators have now launched Atlas Native Complimentary. It is made available free of charge in exchange for the rights to process data regarding GPS data. These data are compared to the fingerprint of the Sigfox network using machine learning, which increases accuracy to 800 meters.

To further increase the accuracy of its geolocation services, Sigfox said it has completed the global implementation of Atlas WiFi in collaboration with HERE Technologies’ mapping experts.

Sigfox uses the global WiFi access point database here. Access points are checked by the Sigfox WiFi tracking module and more closely track the location of external and internal resources with less battery consumption than using GPS.

We are delighted to strengthen our partnership with Amadeus and share our combined expertise to create real digital transformation of the travel sector. Our strategic alliance named PinPoint will not only help to improve the travel experience, but this will also change completely the game for an industry looking for decades for THE technology able to save costs while improving efficiency and quality of services

Raouti Chehih, Chief Adoption Officer at Sigfox

The first services from the strategic alliance are expected to hit the market in 2020.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Sigfox wireless technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Realtek RTL8720DN Dual-Band WiFi & BT 5.0 vs ESP32

IoT market ofers wide range of small and efficient modules for Home & Industrial Internet of Things applications, equipped with 2.4GHz Wi-Fi, such as Espressif’s ESP32 or older ESP8266 modules. Additional Bluetooth 4.2/5.0 is often found on those. Dual-band Wi-Fi, on the other hand, is hard to find on low-budget IoT modules. Here comes Realtek RTL8720DN.

Realtek RTL2720DN module, as a part of AmebaD family, comes with ARM Cortex-M4/M0 wireless MCU with support of 802.11 b/g/n Dual-Band Wi-Fi 2.4GHz / 5GHz and extra Bluetooth 5.0 wireless connectivity.

Realtek RTL8720DN Dual-Band WiFi & Bluetooth 5.0 module

Realtek RTL8720DN specifications:

  • Wireless SoC – Realtek RTK8720DN MCU with KM4 Arm Cortex-M4 core @ 200 MHz and KM0 Arm Cortex-M0 core @ 20 MHz
  • Connectivity
    • WiFi
      • 802.11 a/b/g/n WiFi 4
      • Frequency Range – 2.412-2.484GHz & 5.180-5.825GHz
      • Data Rates
        • 802.11a: 6,9,12,18,24,36,48,54Mbps
        • 802.11b: 1,2,5.5,11Mbps
        • 802.11g: 6,9,12,18,24,36,48,54Mbps
        • 802.11n: MCS0–MCS7 @ HT20/HT40 2.4GHz and 5GHz bands
      • AP, Station, AP/Client supported
    • Bluetooth
      • Bluetooth 5.0 LE
      • Receiver Sensitivity: -92 dBm
      • Transmit Power: 7 dBm
    • Antenna – IPEX connector or PCB Antenna
  • I/O – 16x castellated holes with GPIO, 2x UART (AT commands + serial), ADC, I2C, SPI, 4x PWM, 3.3V, GND
  • Power Supply – 3.3±5% V
  • Dimensions – 24 x 16 x 3 mm
  • Temperature Range – Operating: -20°C to 85°C; storage: -40°C to 125°C
  • Relative Humidity – 10%~90% (non-condensing)
  • Certifications – FCC, CE, SRRC, RoHS

Source: https://www.cnx-software.com/2020/01/17/realtek-rtl8720dn-dual-band-wifi-bluetooth-5-0-iot-module/

Bluetooth 5.0 update for ESP32

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32
Bluetooth LE 5.0/5.1 comming soon to ESP32-based controller

The Espressif’s flagship ESP32 chip recently passed the SIG Bluetooth LE 5.0 certification. This confirms that the version of the protocol supported by the ESP32 microcontroller has been upgraded from Bluetooth LE 4.2 to Bluetooth LE 5.0, which is more stable and compatible.

The implementation and development of the Bluetooth LE (BLE) application requires not only a system that supports this function, but also an attached Bluetooth LE protocol stack consisting of a driver and a host.

Bluetooth 5.0 update for ESP32

Thanks to Bluetooth LE 5.0 certification, ESP32 SoC not only updates the system as a whole, but also adds new features that improve the latest software after passing more stringent tests than previous certification.

Due to hardware limitations, ESP32 does not support such functions of Bluetooth LE 5.0 as 2M PHY, LE Long Range, and ADV Extensions.

It is also worth mentioning that the combination of Bluetooth and Mesh networking is expected to become a key technology for the Internet of Things. A  Bluetooth® Mesh network enables a „many-to-many” relationship among potentially thousands of wireless devices, where data are transmitted not in a direct radio range but in wide physical areas. Espressif’s contribution in this field is the ESP-BLE-MESH, which got fully certified by Bluetooth SIG in September 2019.

Several Bluetooth-operated products on the market, such as wearable devices, smart speakers, cleaning robots, smart lights/sockets, etc., provide evidence that Bluetooth 5.0 and the Bluetooth Mesh networking technology are mature enough to drive the development of interconnected IoT devices. To this end, Espressif’s chips and ESP-BLE-MESH, in particular, are designed to help customers develop easily secure and cost-effective products for smart homes, smart buildings, healthcare, new automobiles and other smart industries.

Source: https://www.espressif.com/en/news/BLE_5.0_Certification

Industrial use of ESP32-based solutions

One of industrial IoT devices, supporting Espressif’s ESP32 technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

The embedded SIM card (eSIM) is a form of programmable SIM card that is directly built in the device. eSIM is a global GSMA specification that enables remote SIM delivery to any supported device, and GSMA defines eSIM as the SIM card for the next generation of connected consumer / professional devices and network solution with the use of eSIM technology.

Easy SIM operator swap

In Industrial IoT applications in which there is no need to change the SIM card, the need of using a connector is avoided, which increases reliability and data security. eSIM can be remotely configured – users can add or change operators without having to physically swap the SIM card from the device. It is often a crucial requirement for the installations where factors such as temperature, water and shock resistance, as well as lack of access forces user to choose remote solutions.

eSIM Raspberry Pi Connvectivity

Raspberry Pi & ESP32-based devices

TECHBASE company is now developing eSIM support for Raspberry Pi and ESP32 industrial devices, such as ModBerry and Moduino X to improve the handling of wireless modem connectivity. To receive an offer for ModBerry/Moduino device with eSIM-based modem, contact our Sales Department via e-mail or Live Chat.

Moduino X3 ESP32

New version of Moduino ESP32, model X3 designed for various economical applications

Moduino X3 model offers new approach to Industrial IoT by upgrading mainboard elements to ensure high performance and ultra-low cost of implementation. In comparison with X2 version, new X3 limits additional ExCard expansion modules, drasticly changing the price of the device, but maintaining the 3-terminal I/Os of previous model. An important change is providing opto-isolation for DIO interface (optionally interchangeable with Relay interface for that I/O).

New version of Moduino ESP32, model X3 is designed for various economical applications, such as Industrial IoT installations, data management & remote edge-devices control. Basic configurations of X3 can be purchased for a price even lower than X1/X2 models for development purposes. Please contact our Sales Department (via Chat or e-mail) to get best price for these devices.

To read more about Industrial Moduino X solution, check here: PDF datasheet

Full comparison below:

Moduino ESP32 Comparison

To order configurable devices, choose Moduino X3 option in Moduino X product configurator here:
https://iiot-shop.com/product/moduino/

ESP32-WROVER-B

Upgraded Espressif’s ESP32 module platform for Moduino X

Espressif, a manufacturer of popular ESP32-based IoT solutions, has developed a new version of the ESP32-WROVER module, called ESP32-WROVER-B. Updated module, in addition to the dual-core LX6 microprocessor, has now twice the amount of RAM, compared to previous version of the WROVER module. The ESP32 module can work with Pseudo Static RAM. Up to now, modules with up to 4MB RAM have been the most common. Recently Espressif Systems introduced a new ESP32-WROVER-B module, which is equipped with up to 8MB pSRAM.

ESP32-WROVER-B

The new module is compatible with TECHBASE’s Moduino X series of IIoT devices. The system works with MicoPython, ESP-IDF (freemask based on FreeRTOS with light-weight Internet Protocol), Mongoose OS, Zephyr Project and is Arduino compatible. ESP32-WROVER-B is based on the ESP32-D0WD system with dimensions 5 x 5 mm, which replaced the earlier ESP32-D0WDQ6 (6 x 6 mm). The ESP32-D0WD model has 2 CPU cores that can be controlled independently. The CPU clock frequency can also be configured in the range of 80 to 240 MHz.

Updated Moduino X with ESP32-WROVER-B also comes with variety of Flash Memory available: 4MB and 16MB.

To read more about Industrial Moduino X solution, visit: https://moduino.techbase.eu/

To order sample devices, loor for  ESP32-WROVER-B option in Moduino X product configurator module: