Wpisy

Industrial wireless communication has become an increasingly important aspect of modern manufacturing and industrial operations. With the rise of the Internet of Things (IoT) and Industry 4.0, wireless communication is being used for everything from sensor networks and machine-to-machine (M2M) communication to remote monitoring and control. With so many different wireless protocols available, it can be difficult to determine which one is the best fit for a particular application. In this article, we will take a closer look at some of the most popular industrial wireless protocols and compare their features and capabilities.

Wi-Fi

This is a widely used protocol for wireless networking in industrial environments. It offers high bandwidth and is well-suited for applications such as data transfer and video streaming. Wi-Fi is a mature technology that is widely available and easy to use. It is also relatively inexpensive and widely supported by manufacturers. However, it is not as well-suited for low-power or low-data-rate applications and may not be the best choice for applications that require extended battery life or low-cost devices.

ZigBee

This is a low-power, low-data-rate protocol that is well-suited for applications such as sensor networks and building automation. Zigbee is a mature technology that is widely available and has a large ecosystem of devices and vendors. It is also relatively inexpensive and easy to use. However, it may not be the best choice for high-bandwidth applications or applications that require extended range.

Z-Wave

This is another low-power protocol that is used in home automation and other applications where low-bandwidth and low-power consumption are important. Z-Wave is a mature technology that is widely available and has a large ecosystem of devices and vendors. It is also relatively inexpensive and easy to use. However, it may not be the best choice for high-bandwidth applications or applications that require extended range.

Wireless protocols comparison (Speed/Range)

Thread

This is a low-power, low-data-rate protocol that is designed for use in home automation and other IoT applications. It is relatively new and is not yet as widely available or supported as other protocols. However, it is designed to be highly secure and is well-suited for applications that require low-power, low-bandwidth communication.

LoRaWAN

This is a long-range, low-power protocol that is well-suited for applications such as smart cities and industrial IoT. LoRaWAN is a relatively new technology that is not yet as widely available or supported as other protocols. However, it is designed to support long-range communications and is well-suited for applications that require low-power, low-bandwidth communication over extended ranges.

Wireless M-Bus

This is a European standard for wireless communication in metering and monitoring applications, such as smart metering and building automation. It is designed to be low-power and long-range, and it can be used in both indoor and outdoor environments. It’s well-suited for applications that require low-power and long-range communication.

NarrowBand-IoT

This is a cellular-based protocol that is designed for low-bandwidth, low-power IoT applications. It is well-suited for applications such as smart metering, asset tracking, and industrial automation. NB-IoT is a relatively new technology that is not yet as widely available or supported as other protocols, but it offers a low-power and low-bandwidth solution for IoT.

DASH7

This is an open-source protocol that is designed for use in low-power, low-data-rate applications such as sensor networks.

Ultimately, the best industrial wireless protocol will depend on the specific requirements of your application, and it’s worth consulting with experts to determine the best solution for your needs.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. Based on the M-Bus wireless bus, a new advanced measurement infrastructure (AMI) was developed to meet the needs of media meters across Europe. Several years have passed since M-Bus and sub-GHz wireless connections were introduced, but they are still evolving in response to changing environments and taking advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Wireless communication over long distances is a requirement for intelligent network devices. These frequencies are unlicensed and provide better radio wave propagation than 2.4 GHz. In Europe, the most common frequencies are 868 MHz, 434 MHz and 169 MHz. These unlicensed bands can be used to reach difficult areas, such as underground meters or the location of buildings with many walls and obstructions. In addition, utilities have lower solution costs when operating in the unlicensed band.

COVID-19 and wireless technologies

The use of wireless technologies during COVID-19 pandemic hazards is often a necessity, to prevent the virus from spreading. One of obvious choices for Internet of Things and home monitoring is Wireless M-Bus implementation.MODUINO series expansion options now include TECHBASE’s high-performance Wireless M-Bus module.

For low power applications using either the specifically allocated 169 MHz metering band or the 868 MHz ISM band, the module can be configured as an embedded micro system or simple data modem. For Industrial IoT applications, the device can be configured for interoperability in a WMBus network.

In terms of covered area and power consumption, the RF implementation ensures best-in-class performance. On the 169 MHz band, the output power can be increased up to +30 dBm (+27 dBm on the optimized version for maximum power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirements (up to 2 μA in sleep mode for wireless M-Bus modules with an RTC clock running).

It is possible to make Moduino devices equipped with a WMBus stack that Embit developed specifically for the ESP32 platform, allowing them to be integrated in any desired system, without effort, and simplifying interactions in WMBus networks.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. Based on the M-Bus wireless bus, a new advanced measurement infrastructure (AMI) was developed to meet the needs of media meters across Europe. Several years have passed since M-Bus and sub-GHz wireless connections were introduced, but they are still evolving in response to changing environments and taking advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Wireless communication over long distances is a requirement for intelligent network devices. These frequencies are unlicensed and provide better radio wave propagation than 2.4 GHz. In Europe, the most common frequencies are 868 MHz, 434 MHz and 169 MHz. These unlicensed bands can be used to reach difficult areas, such as underground meters or the location of buildings with many walls and obstructions. In addition, utilities have lower solution costs when operating in the unlicensed band.

COVID-19 and wireless technologies

The use of wireless technologies during COVID-19 pandemic hazards is often a necessity, to prevent the virus from spreading. One of obvious choices for Internet of Things and home monitoring is Wireless M-Bus implementation.MODUINO series expansion options now include TECHBASE’s high-performance Wireless M-Bus module.

For low power applications using either the specifically allocated 169 MHz metering band or the 868 MHz ISM band, the module can be configured as an embedded micro system or simple data modem. For Industrial IoT applications, the device can be configured for interoperability in a WMBus network.

In terms of covered area and power consumption, the RF implementation ensures best-in-class performance. On the 169 MHz band, the output power can be increased up to +30 dBm (+27 dBm on the optimized version for maximum power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirements (up to 2 μA in sleep mode for wireless M-Bus modules with an RTC clock running).

It is possible to make Moduino devices equipped with a WMBus stack that Embit developed specifically for the ESP32 platform, allowing them to be integrated in any desired system, without effort, and simplifying interactions in WMBus networks.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. The M-Bus wireless bus has been developed as a standard to meet the needs of the European network of media meters and remote reading systems and forms the basis of a new advanced measurement infrastructure (AMI). The frequency of M-Bus and sub-GHz wireless connections has been used for several years, but is still evolving to adapt to changing environments and take advantage of technological advances, including the emergence of the Internet of Things.

2.4 GHz band vs unlicensed bands

Intelligent network devices require robust long-range wireless communication. The most common frequencies are around 868 MHz, 434 MHz and 169 MHz, which are unlicensed bands in Europe and offer better radio wave propagation compared to 2.4 GHz. By using one of these unlicensed bands, radio waves can reach difficult areas such as underground meters or the location of buildings with many walls or obstacles. Another advantage of operating in the unlicensed band is that utilities have lower solution costs.

COVID-19 and wireless technologies

In times of COVID-19 pandemic hazards, the use of wireless technologies is often a must, to prevent further spread of the coronavirus. One of obvious choices for Internet of Things and home monitorng is Wireless M-Bus implementation.

TECHBASE has added high performance module for Wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

The wM-Bus or Wireless Meter Bus is a European standard (EN 13757-4) that defines communication between usability meters and data loggers, hubs or intelligent meter gates. The M-Bus wireless bus has been developed as a standard to meet the needs of the European network of media meters and remote reading systems and forms the basis of a new advanced measurement infrastructure (AMI). The frequency of M-Bus and sub-GHz wireless connections has been used for several years, but is still evolving to adapt to changing environments and take advantage of technological advances, including the emergence of the Internet of Things.

COVID-19 and wireless technologies

In times of COVID-19 pandemic hazards, the use of wireless technologies is often a must, to prevent further spread of the coronavirus. One of obvious choices for Internet of Things and home monitorng is Wireless M-Bus implementation.

TECHBASE has added high performance module for Wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

2.4 GHz band vs unlicensed bands

Intelligent network devices require robust long-range wireless communication. The most common frequencies are around 868 MHz, 434 MHz and 169 MHz, which are unlicensed bands in Europe and offer better radio wave propagation compared to 2.4 GHz. By using one of these unlicensed bands, radio waves can reach difficult areas such as underground meters or the location of buildings with many walls or obstacles. Another advantage of operating in the unlicensed band is that utilities have lower solution costs.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

ZigBee Mesh used in end-point IoT devices

ZigBee mesh‚s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

ZigBee Mesh. Source: ZigBee Alliance
ZigBee Mesh. Source: ZigBee Alliance

Compatibility is also promoted, as ZigBee Mesh 3.0 brings all the various ZigBee environments to a single, unified standard. Over the years, ZigBee has covered applications ranging from industrial to business to home, which has led to the development of separate service standards. ZigBee 3.0 collects all these various applications under one umbrella. This eliminates the need for mediation bridges between different sets of ZigBee supporting devices. All of them will be able to communicate directly, regardless of type.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Data security via ZigBee wireless technology

ZigBee 3.0 has introduced an advanced set of tools that allows designers to introduce reliable networks with a balanced security policy and ease of installation. Available features will be constantly updated to respond to emerging threats. The security solution used is based on the ZigBee PRO grating protocol, which was originally created for the ZigBee Smart Energy profile. It is currently used by hundreds of millions of media consumption meters around the world, without detecting any security holes.

New features include device-unique authentication, when connecting to the mesh network, updating of keys used during work, secure software update via wireless network and data encryption at the logical layer of the link.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.